Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies.

Takema Fukatsu, Ryuichi Koga, Wendy A Smith, Kohjiiro Tanaka, Naruo Nikoh, Kayoko Sasaki-Fukatsu, Kazunori Yoshizawa, Colin Dale, Dale H Clayton
Author Information
  1. Takema Fukatsu: National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan. t-fukatsu@aist.go.jp

Abstract

The current study focuses on a symbiotic bacterium found in the slender pigeon louse, Columbicola columbae (Insecta: Phthiraptera). Molecular phylogenetic analyses indicated that the symbiont belongs to the gamma subdivision of the class Proteobacteria and is allied to Sodalis glossinidius, the secondary symbiont of tsetse flies (Glossina spp.) and also to the primary symbiont of grain weevils (Sitophilus spp.). Relative-rate tests revealed that the symbiont of C. columbae exhibits accelerated molecular evolution in comparison with the tsetse fly symbiont and the weevil symbiont. Whole-mount in situ hybridization was used to localize the symbiont and determine infection dynamics during host development. In first- and second-instar nymphs, the symbionts were localized in the cytoplasm of oval bacteriocytes that formed small aggregates on both sides of the body cavity. In third-instar nymphs, the bacteriocytes migrated to the central body and were finally located in the anterior region of the lateral oviducts, forming conspicuous tissue formations called ovarial ampullae. In adult females, the symbionts were transmitted from the ovarial ampullae to developing oocytes in the ovarioles. In adult males, the bacteriocytes often disappeared without migration. A diagnostic PCR survey of insects collected from Japan, the United States, Australia, and Argentina detected 96.5% (109/113) infection, with a few uninfected male insects. This study provides the first microbial characterization of a bacteriocyte-associated symbiont from a chewing louse. Possible biological roles of the symbiont are discussed in relation to the host nutritional physiology associated with the feather-feeding lifestyle.

Associated Data

GENBANK | AB303382; AB303383; AB303384; AB303385; AB303386; AB303387; EU021695; EU021696; EU021697

References

  1. Genome Res. 2006 Feb;16(2):149-56 [PMID: 16365377]
  2. Appl Environ Microbiol. 2006 Nov;72(11):7013-21 [PMID: 16950907]
  3. Trends Microbiol. 2006 Sep;14(9):406-12 [PMID: 16875825]
  4. Electron Microsc Rev. 1991;4(1):47-83 [PMID: 1714783]
  5. PLoS Biol. 2006 Oct;4(10):e337 [PMID: 17032065]
  6. Nature. 2006 May 25;441(7092):509-12 [PMID: 16724067]
  7. Proc Biol Sci. 2004 Sep 7;271(1550):1771-6 [PMID: 15315891]
  8. Appl Environ Microbiol. 1998 Oct;64(10):3599-606 [PMID: 9758773]
  9. Mol Ecol. 1999 Nov;8(11):1935-45 [PMID: 10620236]
  10. Annu Rev Entomol. 1998;43:17-37 [PMID: 15012383]
  11. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12397-402 [PMID: 12213957]
  12. Nat Rev Genet. 2002 Nov;3(11):850-61 [PMID: 12415315]
  13. PLoS Biol. 2003 Oct;1(1):E21 [PMID: 14551917]
  14. Int J Syst Bacteriol. 1999 Jan;49 Pt 1:267-75 [PMID: 10028272]
  15. Can J Microbiol. 1983 Jul;29(7):755-62 [PMID: 6413046]
  16. Appl Environ Microbiol. 2005 Jul;71(7):4069-75 [PMID: 16000822]
  17. Appl Environ Microbiol. 2007 Mar;73(5):1659-64 [PMID: 17220259]
  18. Microb Ecol. 2002 Jul;44(1):78-93 [PMID: 12019462]
  19. Appl Microbiol Biotechnol. 2003 Mar;61(1):1-9 [PMID: 12658509]
  20. Mol Ecol. 2005 Jan;14(1):285-94 [PMID: 15643971]
  21. Insect Biochem Mol Biol. 2006 Jul;36(7):584-92 [PMID: 16835024]
  22. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  23. Appl Environ Microbiol. 2004 Sep;70(9):5366-72 [PMID: 15345422]
  24. Brief Bioinform. 2004 Jun;5(2):150-63 [PMID: 15260895]
  25. FEMS Microbiol Lett. 2007 Apr;269(1):131-5 [PMID: 17227456]
  26. Nature. 2000 Sep 7;407(6800):81-6 [PMID: 10993077]
  27. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  28. Bioinformatics. 2002 Mar;18(3):502-4 [PMID: 11934758]
  29. Mol Biol Evol. 2004 Jun;21(6):965-73 [PMID: 14739242]
  30. Appl Environ Microbiol. 2006 Nov;72(11):7349-52 [PMID: 16950915]
  31. Nat Genet. 2002 Nov;32(3):402-7 [PMID: 12219091]
  32. Bioinformatics. 2000 Mar;16(3):296-7 [PMID: 10869026]

MeSH Term

Animals
DNA, Bacterial
Female
Gammaproteobacteria
In Situ Hybridization, Fluorescence
Male
Molecular Sequence Data
Nymph
Phthiraptera
Phylogeny
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Symbiosis
Tsetse Flies
Weevils

Chemicals

DNA, Bacterial
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0symbiontlousecolumbaetsetsebacteriocytesstudyslenderpigeonColumbicolaalliedfliessppgrainweevilsinfectionhostnymphssymbiontsbodyovarialampullaeadultinsectscurrentfocusessymbioticbacteriumfoundInsecta:PhthirapteraMolecularphylogeneticanalysesindicatedbelongsgammasubdivisionclassProteobacteriaSodalisglossinidiussecondaryGlossinaalsoprimarySitophilusRelative-ratetestsrevealedCexhibitsacceleratedmolecularevolutioncomparisonflyweevilWhole-mountsituhybridizationusedlocalizedeterminedynamicsdevelopmentfirst-second-instarlocalizedcytoplasmovalformedsmallaggregatessidescavitythird-instarmigratedcentralfinallylocatedanteriorregionlateraloviductsformingconspicuoustissueformationscalledfemalestransmitteddevelopingoocytesovariolesmalesoftendisappearedwithoutmigrationdiagnosticPCRsurveycollectedJapanUnitedStatesAustraliaArgentinadetected965%109/113uninfectedmaleprovidesfirstmicrobialcharacterizationbacteriocyte-associatedchewingPossiblebiologicalrolesdiscussedrelationnutritionalphysiologyassociatedfeather-feedinglifestyleBacterialendosymbiontendosymbionts

Similar Articles

Cited By