Surgical caloric restriction ameliorates mitochondrial electron transport dysfunction in obese females.

Jing Li, Ritchie J Feuers, Varsha G Desai, Sherry M Lewis, Peter H Duffy, Martha A Mayhugh, George Cowan, Cynthia K Buffington
Author Information
  1. Jing Li: Guangzhou Institute of Respiratory Disease, Guangzhou, PR. China.

Abstract

BACKGROUND: The authors examine the mitochondrial electron transport system (ETS) with regard to caloric restriction and body size in humans.
METHODS: The study population included 59 morbidly obese (MO) female subjects with mean body mass index (BMI) 49.6 +/- 1.7 and 40 age-matched previously morbidly obese patients with surgically-induced caloric restriction (SCR) and mean BMI 28.9 +/- 1.1. ETS function in the 2 study groups were made by measuring their lymphocyte mitochondrial ETS complexes I-IV activities and complex III binding kinetics. Linear regression analyses were used to analyze the interactions between ETS function and BMI, energy intake, and metabolic status.
RESULTS: The MO, as compared to SCR, subjects had significantly (P < 0.01) higher ETS complexes II-IV activities (complex II = 20.4 +/- 1.9 vs 15.3 +/- 1.1, complex III = 129.4 +/- 10.1 vs 72.3 +/- 4.9, complex IV = 3.1 +/- 0.3 vs 1.4 +/- 0.1 nmol/mg/min for the MO vs SCR, respectively). ETS complexes activities were positively and significantly correlated with subjects' BMI, carbohydrate caloric intake, and fasting plasma insulin levels. Michaelis-Menten kinetic analysis showed that the Km for ubiquinol-2 in complex III of MO patients was 2-fold greater than SCR values, reflecting an apparent reduction in substrate binding capacities producing a resistance to electron flow in the MO population. Caloric consumption, carbohydrate calories, insulin levels, and BMI were also each significantly (P < 0.05) and positively correlated with the Km of Complex III.
CONCLUSIONS: ETS function and efficiency are compromised by increasing BMI and caloric consumption in morbidly obese women, and caloric restriction may reduce the potential for excessive oxidative free radical generation via the ETS.

References

  1. Am J Med. 1996 Feb;100(2):230-6 [PMID: 8629660]
  2. Mutat Res. 1993 Dec;295(4-6):191-200 [PMID: 7507557]
  3. Am J Surg. 1993 Jan;165(1):155-60; discussion 160-2 [PMID: 8418692]
  4. Ann Intern Med. 1993 Oct 1;119(7 Pt 2):655-60 [PMID: 8363192]
  5. J Gerontol. 1956 Jul;11(3):298-300 [PMID: 13332224]
  6. Sci Am. 1996 Jan;274(1):46-52 [PMID: 8533065]
  7. Ann N Y Acad Sci. 1998 Nov 20;854:192-201 [PMID: 9928430]
  8. Respirology. 2001 Mar;6(1):9-13 [PMID: 11264757]
  9. Ann Intern Med. 1985 Dec;103(6 ( Pt 2)):1052-62 [PMID: 4062125]
  10. Int J Obes. 1990 Nov;14(11):939-50 [PMID: 2276855]
  11. Biochim Biophys Acta. 1994 Apr 12;1226(1):73-82 [PMID: 8155742]
  12. Obes Surg. 1994 Nov;4(4):328-335 [PMID: 10742796]
  13. Am J Med Sci. 2006 Apr;331(4):183-93 [PMID: 16617233]
  14. Nutr Rev. 1997 Jan;55(1 Pt 2):S44-9; discussion S49-52 [PMID: 9155225]
  15. Am J Respir Cell Mol Biol. 1992 Jan;6(1):88-92 [PMID: 1728300]
  16. Br Med Bull. 1997;53(2):433-44 [PMID: 9246844]
  17. Endocrine. 2006 Feb;29(1):27-32 [PMID: 16622290]
  18. Am J Clin Nutr. 1992 Feb;55(2 Suppl):597S-601S [PMID: 1733136]
  19. Am J Surg. 1992 Mar;163(3):294-7 [PMID: 1539761]
  20. Ann Surg. 1998 May;227(5):637-43; discussion 643-4 [PMID: 9605655]
  21. Am J Clin Nutr. 1992 Feb;55(2 Suppl):560S-566S [PMID: 1733127]
  22. Obes Surg. 1995 Aug;5(3):314-318 [PMID: 10733818]
  23. Free Radic Biol Med. 1997;23(2):191-201 [PMID: 9199881]
  24. Free Radic Biol Med. 1990;8(6):523-39 [PMID: 2193852]
  25. Biochem Mol Biol Int. 1993 Aug;30(5):937-44 [PMID: 8220242]
  26. Ann Surg. 1995 Sep;222(3):339-50; discussion 350-2 [PMID: 7677463]
  27. Mutat Res. 1992 Sep;275(3-6):395-403 [PMID: 1383780]
  28. J Basic Clin Physiol Pharmacol. 1995;6(3-4):205-28 [PMID: 8852268]
  29. Ann Surg. 1990 Apr;211(4):419-27 [PMID: 2181950]
  30. Arch Biochem Biophys. 1996 Sep 1;333(1):145-51 [PMID: 8806765]
  31. Obes Surg. 1992 Nov;2(4):303-313 [PMID: 10765190]
  32. J Neurol Sci. 1992 Nov;113(1):91-8 [PMID: 1469460]
  33. Lancet. 1989 Mar 25;1(8639):642-5 [PMID: 2564461]
  34. Arch Surg. 1993 Oct;128(10):1153-7 [PMID: 8215875]
  35. Acta Neurochir Suppl. 1997;70:56-8 [PMID: 9416277]
  36. Am J Clin Nutr. 1992 Feb;55(2 Suppl):591S-593S [PMID: 1733134]
  37. World J Surg. 1998 Sep;22(9):987-92 [PMID: 9717426]
  38. Obes Surg. 1996 Aug;6(4):345-348 [PMID: 10729876]
  39. J Gerontol. 1988 May;43(3):B59-64 [PMID: 3283209]
  40. Obes Surg. 1993 Aug;3(3):233-238 [PMID: 10757925]
  41. Lancet. 1989 Mar 25;1(8639):637-9 [PMID: 2564459]

MeSH Term

Adult
Body Mass Index
Body Size
Caloric Restriction
Case-Control Studies
Electron Transport Chain Complex Proteins
Female
Gastric Bypass
Humans
Lymphocytes
Obesity, Morbid

Chemicals

Electron Transport Chain Complex Proteins

Word Cloud

Created with Highcharts 10.0.01ETS+/-caloricBMIMOcomplexrestrictionobeseSCRIII04vs3mitochondrialelectronmorbidly9functioncomplexesactivitiessignificantly=transportbodystudypopulationsubjectsmeanpatientsbindingintakeP<positivelycorrelatedcarbohydrateinsulinlevelsKmconsumptionBACKGROUND:authorsexaminesystemregardsizehumansMETHODS:included59femalemassindex496740age-matchedpreviouslysurgically-induced282groupsmademeasuringlymphocyteI-IVkineticsLinearregressionanalysesusedanalyzeinteractionsenergymetabolicstatusRESULTS:compared01higherII-IVII20151291072IVnmol/mg/minrespectivelysubjects'fastingplasmaMichaelis-Mentenkineticanalysisshowedubiquinol-22-foldgreatervaluesreflectingapparentreductionsubstratecapacitiesproducingresistanceflowCaloriccaloriesalso05ComplexCONCLUSIONS:efficiencycompromisedincreasingwomenmayreducepotentialexcessiveoxidativefreeradicalgenerationviaSurgicalamelioratesdysfunctionfemales

Similar Articles

Cited By