Adaptive evolution of cry genes in Bacillus thuringiensis: implications for their specificity determination.

Jin-Yu Wu, Fang-Qing Zhao, Jie Bai, Gang Deng, Song Qin, Qi-Yu Bao
Author Information
  1. Jin-Yu Wu: Institute of Biomedical Informatics, Wenzhou Medical College, Wenzhou 325000, China.

Abstract

The cry gene family, produced during the late exponential phase of growth in Bacillus thuringiensis, is a large, still-growing family of homologous genes, in which each gene encodes a protein with strong specific activity against only one or a few insect species. Extensive studies are mostly focusing on the structural and functional relationships of Cry proteins, and have revealed several residues or domains that are important for the target recognition and receptor attachment. In this study, we have employed a maximum likelihood method to detect evidence of adaptive evolution in Cry proteins, and have identified 24 positively selected residues, which are all located in Domain II or III. Combined with known data from mutagenesis studies, the majority of these residues, at the molecular level, contribute much to the insect specificity determination. We postulate that the potential pressures driving the diversification of Cry proteins may be in an attempt to adapt for the "arm race" between delta-endotoxins and the targeted insects, or to enlarge their target spectra, hence result in the functional divergence. The sites identified to be under positive selection would provide targets for further structural and functional analyses on Cry proteins.

References

  1. Microbiol Mol Biol Rev. 1998 Sep;62(3):775-806 [PMID: 9729609]
  2. Genetics. 1998 Mar;148(3):929-36 [PMID: 9539414]
  3. Trends Ecol Evol. 2000 Dec 1;15(12):496-503 [PMID: 11114436]
  4. J Mol Biol. 2005 Apr 29;348(2):363-82 [PMID: 15811374]
  5. Genetics. 2004 Oct;168(2):1041-51 [PMID: 15514074]
  6. Gene. 2002 Oct 30;300(1-2):43-51 [PMID: 12468084]
  7. Mol Biol Evol. 2002 Jun;19(6):908-17 [PMID: 12032247]
  8. Mol Biol Evol. 2005 Apr;22(4):1107-18 [PMID: 15689528]
  9. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  10. J Bacteriol. 1995 Jul;177(14):4059-65 [PMID: 7608080]
  11. Biochem J. 2004 Dec 15;384(Pt 3):507-13 [PMID: 15320864]
  12. FEMS Microbiol Lett. 2005 Jan 15;242(2):325-32 [PMID: 15621455]
  13. Mol Microbiol. 1999 Jan;31(2):463-71 [PMID: 10027964]
  14. Annu Rev Genet. 2003;37:409-33 [PMID: 14616068]
  15. Microbiology. 1996 Jul;142 ( Pt 7):1617-24 [PMID: 8757726]
  16. Appl Environ Microbiol. 1999 Oct;65(10):4513-20 [PMID: 10508083]
  17. Appl Environ Microbiol. 1999 Oct;65(10):4369-74 [PMID: 10508062]
  18. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  19. Mol Biol Evol. 2002 Aug;19(8):1341-9 [PMID: 12140246]
  20. BMC Evol Biol. 2006 Jun 02;6:44 [PMID: 16740169]
  21. Electrophoresis. 1997 Dec;18(15):2714-23 [PMID: 9504803]
  22. Microbiol Mol Biol Rev. 1998 Sep;62(3):807-13 [PMID: 9729610]
  23. Brief Bioinform. 2004 Jun;5(2):150-63 [PMID: 15260895]
  24. Microbiol Rev. 1989 Jun;53(2):242-55 [PMID: 2666844]
  25. J Mol Evol. 2005 Apr;60(4):426-33 [PMID: 15883878]
  26. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3179-80 [PMID: 15728394]
  27. J Bacteriol. 1997 May;179(9):2793-801 [PMID: 9139891]
  28. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]

MeSH Term

Adaptation, Biological
Amino Acid Sequence
Bacillus thuringiensis
Bacillus thuringiensis Toxins
Bacterial Proteins
Bacterial Toxins
Bayes Theorem
Cluster Analysis
Consensus Sequence
Conserved Sequence
Endotoxins
Evolution, Molecular
Gene Expression Regulation, Bacterial
Genes, Bacterial
Hemolysin Proteins
Likelihood Functions
Models, Molecular
Molecular Sequence Data
Multigene Family
Phylogeny
Protein Structure, Tertiary
Selection, Genetic
Sensitivity and Specificity
Sequence Homology, Amino Acid

Chemicals

Bacillus thuringiensis Toxins
Bacterial Proteins
Bacterial Toxins
Endotoxins
Hemolysin Proteins
insecticidal crystal protein, Bacillus Thuringiensis

Word Cloud

Created with Highcharts 10.0.0CryproteinsfunctionalresiduescrygenefamilyBacillusgenesinsectstudiesstructuraltargetevolutionidentifiedspecificitydeterminationproducedlateexponentialphasegrowththuringiensislargestill-growinghomologousencodesproteinstrongspecificactivityonespeciesExtensivemostlyfocusingrelationshipsrevealedseveraldomainsimportantrecognitionreceptorattachmentstudyemployedmaximumlikelihoodmethoddetectevidenceadaptive24positivelyselectedlocatedDomainIIIIICombinedknowndatamutagenesismajoritymolecularlevelcontributemuchpostulatepotentialpressuresdrivingdiversificationmayattemptadapt"armrace"delta-endotoxinstargetedinsectsenlargespectrahenceresultdivergencesitespositiveselectionprovidetargetsanalysesAdaptivethuringiensis:implications

Similar Articles

Cited By