A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules.

Ganna Panasyuk, Ivan Nemazanyy, Valeriy Filonenko, Boris Negrutskii, Anna V El'skaya
Author Information
  1. Ganna Panasyuk: Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Abstract

The eEF1A1 and eEF1A2 isoforms of translation elongation factor 1A have 98% similarity and perform the same protein synthesis function catalyzing codon-dependent binding of aminoacyl-tRNA to 80S ribosome. However, the isoforms apparently play different non-canonical roles in apoptosis and cancer development which are awaiting further investigations. We hypothesize that the difference in non-translational functions could be caused, in particular, by differential ability of the isoforms to be involved in phosphotyrosine-mediated signalling. The ability of eEF1A1 and eEF1A2 to interact with SH2 and SH3 domains of different signalling molecules in vitro was compared. Indeed, contrary to eEF1A1, eEF1A2 was able to interact with SH2 domains of Grb2, RasGAP, Shc and C-terminal part of Shp2 as well as with SH3 domains of Crk, Fgr, Fyn and phospholipase C-gamma1. Interestingly, the interaction of both isoforms with Shp2 in vivo was found using stable cell lines expressing eEF1A1-His or eEF1A2-His. The formation of a complex between endogenous eEF1A and Shp2 was also shown. Importantly, a higher level of tyrosine phosphorylation of eEF1A2 as compared to eEF1A1 was demonstrated in several independent experiments and its importance for interaction of eEF1A2 with Shp2 in vitro was revealed. Thus, despite the fact that both isoforms of eEF1A could be involved in the phosphotyrosine-mediated processes, eEF1A2 apparently has greater potential to participate in such signalling pathways. Since tyrosine kinases/phosphatases play a prominent role in human cancerogenesis, our observations may gave a basis for recently found oncogenicity of the eEF1A2 isoform.

References

  1. Mol Cells. 1999 Dec 31;9(6):631-7 [PMID: 10672930]
  2. Nucleic Acids Res. 1998 Apr 15;26(8):1884-90 [PMID: 9518480]
  3. Science. 1994 Oct 14;266(5183):282-5 [PMID: 7939665]
  4. Reprod Biol Endocrinol. 2003 Oct 07;1:69 [PMID: 14588074]
  5. Oncogene. 2006 Nov 16;25(54):7166-79 [PMID: 16767162]
  6. J Cell Biochem. 2007 Feb 1;100(2):267-78 [PMID: 16888816]
  7. Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 [PMID: 12824383]
  8. Curr Opin Genet Dev. 2007 Feb;17(1):23-30 [PMID: 17227708]
  9. BMC Cancer. 2005 Sep 12;5:113 [PMID: 16156888]
  10. Biochem Soc Trans. 2006 Nov;34(Pt 5):846-50 [PMID: 17052212]
  11. Nat Struct Mol Biol. 2005 Sep;12(9):772-8 [PMID: 16116436]
  12. Curr Pharm Des. 2005;11(9):1119-30 [PMID: 15853660]
  13. Sci STKE. 2003 Jul 15;2003(191):RE12 [PMID: 12865499]
  14. Cell. 1993 Oct 8;75(1):25-36 [PMID: 8402898]
  15. Biochem J. 2005 Sep 15;390(Pt 3):641-53 [PMID: 16134966]
  16. J Proteome Res. 2005 May-Jun;4(3):931-40 [PMID: 15952740]
  17. J Cell Biol. 1996 Dec;135(5):1309-21 [PMID: 8947553]
  18. Eur J Biochem. 2002 Oct;269(19):4811-8 [PMID: 12354112]
  19. Arch Biochem Biophys. 1984 Nov 1;234(2):603-11 [PMID: 6568109]
  20. Breast Cancer Res. 2006;8(6):R73 [PMID: 17196107]
  21. Mol Cell Biochem. 2006 Jun;286(1-2):17-22 [PMID: 16652225]
  22. Biochemistry. 2002 Dec 24;41(51):15342-9 [PMID: 12484773]
  23. Oncogene. 2007 May 10;26(21):3027-40 [PMID: 17130842]
  24. J Biol Chem. 1991 Jun 5;266(16):10429-37 [PMID: 1709933]
  25. Oncogene. 2001 Oct 1;20(44):6348-71 [PMID: 11607838]
  26. Nat Biotechnol. 2005 Jan;23(1):94-101 [PMID: 15592455]
  27. Amino Acids. 2004 Jul;26(4):443-8 [PMID: 15290352]
  28. J Biol Chem. 2002 Dec 20;277(51):50190-7 [PMID: 12384497]
  29. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78 [PMID: 9594571]
  30. Biochem J. 2002 Aug 1;365(Pt 3):669-76 [PMID: 11985494]
  31. Clin Exp Immunol. 2007 Jan;147(1):164-75 [PMID: 17177976]
  32. J Biol Chem. 2005 May 6;280(18):18418-24 [PMID: 15738000]
  33. FEBS Lett. 1997 Apr 21;407(1):13-7 [PMID: 9141472]
  34. J Biol Chem. 2002 May 31;277(22):19697-702 [PMID: 11886851]
  35. Nat Genet. 2002 Jul;31(3):301-5 [PMID: 12053177]

Grants

  1. 074742/Z04/Z/Wellcome Trust

MeSH Term

Animals
Cattle
Cell Line
Cell Transformation, Neoplastic
Humans
Peptide Elongation Factor 1
Phosphorylation
Protein Biosynthesis
Protein Interaction Domains and Motifs
Protein Isoforms
Protein Tyrosine Phosphatase, Non-Receptor Type 11
Rabbits
Signal Transduction
Transfection
src Homology Domains

Chemicals

EEF1A1 protein, human
EEF1A2 protein, human
Peptide Elongation Factor 1
Protein Isoforms
Protein Tyrosine Phosphatase, Non-Receptor Type 11

Word Cloud

Created with Highcharts 10.0.0eEF1A2isoformseEF1A1signallingShp2differentabilityinteractdomainseEF1Atyrosinetranslationfactorapparentlyplayinvolvedphosphotyrosine-mediatedSH2SH3moleculesvitrocomparedinteractionfoundphosphorylationisoformelongation1A98%similarityperformproteinsynthesisfunctioncatalyzingcodon-dependentbindingaminoacyl-tRNA80SribosomeHowevernon-canonicalrolesapoptosiscancerdevelopmentawaitinginvestigationshypothesizedifferencenon-translationalfunctionscausedparticulardifferentialIndeedcontraryableGrb2RasGAPShcC-terminalpartwellCrkFgrFynphospholipaseC-gamma1InterestinglyvivousingstablecelllinesexpressingeEF1A1-HiseEF1A2-HisformationcomplexendogenousalsoshownImportantlyhigherleveldemonstratedseveralindependentexperimentsimportancerevealedThusdespitefactprocessesgreaterpotentialparticipatepathwaysSincekinases/phosphatasesprominentrolehumancancerogenesisobservationsmaygavebasisrecentlyoncogenicityA2mammaliandisplaysincreased

Similar Articles

Cited By (22)