Parameter estimation for bursting neural models.

Joseph H Tien, John Guckenheimer
Author Information
  1. Joseph H Tien: Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA. joetien@gmail.com

Abstract

This paper presents work on parameter estimation methods for bursting neural models. In our approach we use both geometrical features specific to bursting, as well as general features such as periodic orbits and their bifurcations. We use the geometry underlying bursting to introduce defining equations for burst initiation and termination, and restrict the estimation algorithms to the space of bursting periodic orbits when trying to fit periodic burst data. These geometrical ideas are combined with automatic differentiation to accurately compute parameter sensitivities for the burst timing and period. In addition to being of inherent interest, these sensitivities are used in standard gradient-based optimization algorithms to fit model burst duration and period to data. As an application, we fit Butera et al.'s (Journal of Neurophysiology 81, 382-397, 1999) model of preBötzinger complex neurons to empirical data both in control conditions and when the neuromodulator norepinephrine is added (Viemari and Ramirez, Journal of Neurophysiology 95, 2070-2082, 2006). The results suggest possible modulatory mechanisms in the preBötzinger complex, including modulation of the persistent sodium current.

References

  1. Comp Biochem Physiol A Mol Integr Physiol. 2001 Sep;130(2):207-18 [PMID: 11544068]
  2. J Neurophysiol. 1999 Jul;82(1):382-97 [PMID: 10400966]
  3. J Neurophysiol. 1994 Dec;72(6):2598-608 [PMID: 7897477]
  4. J Neurophysiol. 2006 Apr;95(4):2070-82 [PMID: 16394066]
  5. J Comput Neurosci. 2000 Nov-Dec;9(3):215-36 [PMID: 11139040]
  6. J Physiol. 2001 Nov 15;537(Pt 1):69-81 [PMID: 11711562]
  7. J Math Biol. 1987;25(6):653-75 [PMID: 3437231]
  8. J Gen Physiol. 1999 Oct;114(4):491-509 [PMID: 10498669]
  9. Annu Rev Neurosci. 2003;26:239-66 [PMID: 12598679]
  10. Exp Brain Res. 1989;76(3):530-6 [PMID: 2551710]
  11. Respir Physiol Neurobiol. 2003 Oct 16;138(1):19-35 [PMID: 14519375]
  12. Biophys J. 1988 Sep;54(3):411-25 [PMID: 2850029]
  13. Biol Cybern. 2004 Jan;90(1):59-74 [PMID: 14762725]
  14. J Neurophysiol. 1991 Feb;65(2):371-82 [PMID: 1826741]
  15. Proc R Soc Lond B Biol Sci. 1984 Mar 22;221(1222):87-102 [PMID: 6144106]
  16. J Comput Neurosci. 1999 Sep-Oct;7(2):149-71 [PMID: 10515252]
  17. Nature. 1999 Jul 22;400(6742):360-3 [PMID: 10432113]
  18. J Neurophysiol. 1993 Jun;69(6):1948-65 [PMID: 7688798]
  19. Brain Res. 2005 Feb 1;1033(1):20-7 [PMID: 15680335]
  20. J Neurophysiol. 1993 Dec;70(6):2502-18 [PMID: 7509859]
  21. Trends Mol Med. 2003 Dec;9(12):542-8 [PMID: 14659469]
  22. J Neurosci. 2003 Aug 20;23(20):7685-9 [PMID: 12930808]
  23. Science. 1991 Nov 1;254(5032):726-9 [PMID: 1683005]
  24. Annu Rev Physiol. 1996;58:349-62 [PMID: 8815799]
  25. Eur J Neurosci. 2002 Jul;16(2):209-18 [PMID: 12169103]
  26. J Neurosci. 2002 Feb 15;22(4):1256-65 [PMID: 11850453]
  27. J Neurophysiol. 2003 Dec;90(6):3998-4015 [PMID: 12944532]

MeSH Term

Animals
Brain
Electrophysiology
Models, Neurological
Neurons
Norepinephrine
Potassium Channels

Chemicals

Potassium Channels
Norepinephrine

Word Cloud

Created with Highcharts 10.0.0burstingburstestimationperiodicfitdataparameterneuralmodelsusegeometricalfeaturesorbitsalgorithmssensitivitiesperiodmodelJournalNeurophysiologypreBötzingercomplexpaperpresentsworkmethodsapproachspecificwellgeneralbifurcationsgeometryunderlyingintroducedefiningequationsinitiationterminationrestrictspacetryingideascombinedautomaticdifferentiationaccuratelycomputetimingadditioninherentinterestusedstandardgradient-basedoptimizationdurationapplicationButeraetal's81382-3971999neuronsempiricalcontrolconditionsneuromodulatornorepinephrineaddedViemariRamirez952070-20822006resultssuggestpossiblemodulatorymechanismsincludingmodulationpersistentsodiumcurrentParameter

Similar Articles

Cited By