Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex.

Shuzhang Yang, Kai Wang, Otto Valladares, Sridhar Hannenhalli, Maja Bucan
Author Information
  1. Shuzhang Yang: Department of Genetics and Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104, USA. shuzhang@mail.med.upenn.edu

Abstract

BACKGROUND: The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by sleep:wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances.
RESULTS: We examined gene expression in the mouse prefrontal cortex at four time points during a 24 hour (12 hour light:12 hour dark) cycle using microarrays, and identified 3,890 transcripts corresponding to 2,927 genes with diurnally regulated expression patterns. We show that 16% of the genes identified in our study are orthologs of identified clock, clock controlled or sleep/wakefulness induced genes in the mouse liver and suprachiasmatic nucleus, rat cortex and cerebellum, or Drosophila head. The diurnal expression patterns were confirmed for 16 out of 18 genes in an independent set of RNA samples. The diurnal genes fall into eight temporal categories with distinct functional attributes, as assessed by Gene Ontology classification and analysis of enriched transcription factor binding sites.
CONCLUSION: Our analysis demonstrates that approximately 10% of transcripts have diurnally regulated expression patterns in the mouse prefrontal cortex. Functional annotation of these genes will be important for the selection of candidate genes for behavioral mutants in the mouse and for genetic studies of disorders associated with anomalies in the sleep:wake cycle and circadian rhythm.

References

  1. Genome Res. 2004 May;14(5):925-8 [PMID: 15078858]
  2. Nat Neurosci. 2005 Jan;8(1):61-6 [PMID: 15580271]
  3. Biol Psychiatry. 2007 Feb 15;61(4):429-37 [PMID: 16996486]
  4. Genes Dev. 2000 Mar 15;14(6):645-9 [PMID: 10733524]
  5. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  6. Trends Cogn Sci. 2002 Nov 1;6(11):475-481 [PMID: 12457899]
  7. Genes Brain Behav. 2007 Feb;6(1):77-96 [PMID: 16734774]
  8. Nat Genet. 2006 Aug;38(8):904-9 [PMID: 16862161]
  9. Mamm Genome. 2002 Sep;13(9):510-4 [PMID: 12370781]
  10. Neuroscience. 2006;137(2):593-605 [PMID: 16257491]
  11. J Clin Psychiatry. 2006;67 Suppl 8:7-12 [PMID: 16961424]
  12. J Neurosci. 2002 Nov 1;22(21):9305-19 [PMID: 12417656]
  13. J Psychiatry Neurosci. 2000 Nov;25(5):446-58 [PMID: 11109296]
  14. Mol Psychiatry. 2005 Jan;10(1):105-16 [PMID: 15340357]
  15. Curr Opin Neurobiol. 2006 Dec;16(6):723-7 [PMID: 17084617]
  16. Nature. 2006 Nov 23;444(7118):499-502 [PMID: 17086198]
  17. Nature. 2002 May 2;417(6884):78-83 [PMID: 11967526]
  18. Circulation. 2005 Oct 25;112(17):2716-24 [PMID: 16230482]
  19. Annu Rev Genet. 2005;39:69-94 [PMID: 16285853]
  20. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [PMID: 15075390]
  21. Mol Psychiatry. 2007 Jun;12(6):581-92 [PMID: 17264841]
  22. Neuron. 2001 Nov 20;32(4):657-71 [PMID: 11719206]
  23. Can J Psychiatry. 1986 Apr;31(3):259-72 [PMID: 3518905]
  24. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  25. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9562-7 [PMID: 12089325]
  26. Acta Psychiatr Scand Suppl. 2003;(418):83-91 [PMID: 12956821]
  27. Science. 2006 Sep 29;313(5795):1922-7 [PMID: 17008524]
  28. Science. 2005 Nov 18;310(5751):1152-8 [PMID: 16254148]
  29. Science. 2002 Sep 27;297(5590):2270-5 [PMID: 12351791]
  30. Brain Behav Evol. 1981;19(3-4):93-107 [PMID: 7326577]
  31. Semin Neurol. 2005 Mar;25(1):117-29 [PMID: 15798944]
  32. Neuropsychobiology. 2002;45 Suppl 1:7-12 [PMID: 11893871]
  33. Biol Psychiatry. 2002 Jan 1;51(1):68-80 [PMID: 11801232]
  34. Nucleic Acids Res. 1996 Jan 1;24(1):238-41 [PMID: 8594589]
  35. Cell. 2001 Nov 30;107(5):567-78 [PMID: 11733057]
  36. Nat Genet. 1999 Jul;22(3):281-5 [PMID: 10391217]
  37. Psychiatr Clin North Am. 2004 Mar;27(1):19-36, vii-viii [PMID: 15062628]
  38. J Med Genet. 2005 Mar;42(3):193-204 [PMID: 15744031]
  39. Physiol Genomics. 2006 Nov 27;27(3):337-50 [PMID: 16954408]
  40. J Neurochem. 2005 Sep;94(5):1411-9 [PMID: 16001966]
  41. Cell. 2002 May 3;109(3):307-20 [PMID: 12015981]
  42. Neuron. 2004 Jan 8;41(1):35-43 [PMID: 14715133]
  43. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]
  44. Neuroscience. 2003;116(1):187-200 [PMID: 12535952]
  45. Trends Biotechnol. 2005 Aug;23(8):429-35 [PMID: 15950303]
  46. J Biol Chem. 2002 Apr 19;277(16):14048-52 [PMID: 11854264]
  47. Dev Cell. 2005 Oct;9(4):449-62 [PMID: 16198288]
  48. Curr Biol. 2002 Apr 2;12(7):540-50 [PMID: 11937022]

Grants

  1. 1R21AI073422-01/NIAID NIH HHS
  2. R01 MH604687/NIMH NIH HHS

MeSH Term

Animals
Binding Sites
Circadian Rhythm
Computational Biology
Gene Expression Profiling
Gene Expression Regulation
Mice
Mice, Inbred C57BL
Polymerase Chain Reaction
Prefrontal Cortex
Sleep
Transcription Factors
Wakefulness

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0genescortexprefrontalexpressionmouseregulatedanalysissleepdisordershouridentifieddiurnallypatternsimportantcontrolledcircadiansleep:wakewillcycletranscriptsclockdiurnalBACKGROUND:regulatingmoodDiurnallymaysystemstatescellularmetabolismenvironmentalresponsesBioinformaticsprovideinsightswide-rangepathwaysinvolvedpathophysiologypsychiatricdisturbancesRESULTS:examinedgenefourtimepoints2412light:12darkusingmicroarrays3890corresponding2927show16%studyorthologssleep/wakefulnessinducedliversuprachiasmaticnucleusratcerebellumDrosophilaheadconfirmed1618independentsetRNAsamplesfalleighttemporalcategoriesdistinctfunctionalattributesassessedGeneOntologyclassificationenrichedtranscriptionfactorbindingsitesCONCLUSION:demonstratesapproximately10%FunctionalannotationselectioncandidatebehavioralmutantsgeneticstudiesassociatedanomaliesrhythmGenome-wideprofilingbioinformatics

Similar Articles

Cited By