Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity.

Irfan Baig, María Perez, Alfredo F Braña, Rohini Gomathinayagam, Chendil Damodaran, Jose A Salas, Carmen Méndez, Jürgen Rohr
Author Information
  1. Irfan Baig: Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536-0082, USA.

Abstract

Plasmid pLNBIV was used to overexpress the biosynthetic pathway of nucleoside-diphosphate (NDP)-activated l-digitoxose in the Mithramycin producer Streptomyces argillaceus. This led to a "flooding" of the biosynthetic pathway of the antitumor drug Mithramycin (MTM) with NDP-activated deoxysugars, which do not normally occur in the pathway, and consequently to the production of the four new Mithramycin derivatives 1- 4 with altered saccharide patterns. Their structures reflect that NDP sugars produced by pLNBIV, namely, l-digitoxose and its biosynthetic intermediates, influenced the glycosyl transfer to positions B, D, and E, while positions A and C remained unaffected. All four new structures have unique, previously not found sugar decoration patterns, which arise from either overcoming the substrate specificity or inhibition of certain glycosyltransferases (GTs) of the MTM pathway with the foreign NDP sugars expressed by pLNBIV. An apoptosis TUNEL (=terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay revealed that compounds 1 (demycarosyl-3D-beta- d-digitoxosyl-MTM) and 3 (deoliosyl-3C-beta- d-mycarosyl-MTM) show improved activity (64.8 +/- 2% and 50.3 +/- 2.5% induction of apoptosis, respectively) against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 compared with the parent drug MTM (37.8 +/- 2.5% induction of apoptosis). In addition, compounds 1 and 4 (3A-deolivosyl-MTM) show significant effects on the ER-negative human breast cancer cell line MDA-231 (63.6 +/- 2% and 12.6 +/- 2.5% induction of apoptosis, respectively), which is not inhibited by the parent drug MTM itself (2.6 +/- 1.5% induction of apoptosis), but for which chemotherapeutic agents are urgently needed.

References

  1. Biochemistry. 2003 Jul 15;42(27):8313-24 [PMID: 12846580]
  2. Biochemistry. 1993 Jul 6;32(26):6588-604 [PMID: 8329387]
  3. JAMA. 2006 Apr 12;295(14):1658-67 [PMID: 16609087]
  4. Chembiochem. 2005 Apr;6(4):632-6 [PMID: 15712316]
  5. Curr Med Chem. 2005;12(14):1637-75 [PMID: 16022664]
  6. Nat Prod Rep. 2002 Oct;19(5):542-80 [PMID: 12430723]
  7. J Nat Prod. 2005 Nov;68(11):1696-711 [PMID: 16309329]
  8. Planta. 2005 Apr;220(6):910-8 [PMID: 15517350]
  9. J Mol Biol. 1995 Sep 1;251(5):674-89 [PMID: 7666419]
  10. Cancer Res. 2007 Jan 1;67(1):246-53 [PMID: 17185378]
  11. J Nat Prod. 2002 Nov;65(11):1685-9 [PMID: 12444703]
  12. J Am Chem Soc. 2003 May 14;125(19):5745-53 [PMID: 12733914]
  13. Mol Cell Biochem. 2005 Dec;280(1-2):125-33 [PMID: 16311913]
  14. Chem Biol. 1999 Jan;6(1):19-30 [PMID: 9889148]
  15. J Bacteriol. 2003 Jul;185(13):3962-5 [PMID: 12813091]
  16. J Natl Cancer Inst. 1990 Jul 4;82(13):1113-8 [PMID: 2359137]
  17. Biochem J. 1997 Sep 15;326 ( Pt 3):929-39 [PMID: 9334165]
  18. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8 [PMID: 12917485]
  19. J Nat Prod. 2002 Feb;65(2):221-44 [PMID: 11858762]
  20. J Am Chem Soc. 2005 Dec 21;127(50):17594-5 [PMID: 16351075]
  21. J Am Chem Soc. 2002 Feb 27;124(8):1606-14 [PMID: 11853433]
  22. J Med Chem. 2003 Jul 31;46(16):3425-36 [PMID: 12877577]
  23. Nucleic Acids Res. 2006;34(6):1721-34 [PMID: 16571899]
  24. J Nat Prod. 1999 Jan;62(1):119-21 [PMID: 9917296]
  25. Trends Biotechnol. 2001 Nov;19(11):449-56 [PMID: 11602309]
  26. Chem Biol. 2002 Jun;9(6):721-9 [PMID: 12079784]
  27. J Mol Microbiol Biotechnol. 2005;9(2):77-85 [PMID: 16319497]
  28. J Bacteriol. 1998 Sep;180(18):4929-37 [PMID: 9733697]
  29. Mol Gen Genet. 2000 Jan;262(6):991-1000 [PMID: 10660060]
  30. Biochem J. 1998 Feb 1;329 (Pt 3):719 [PMID: 9445404]

Grants

  1. R01 CA091901/NCI NIH HHS
  2. R01 CA091901-05/NCI NIH HHS
  3. CA 91901/NCI NIH HHS

MeSH Term

Antibiotics, Antineoplastic
Combinatorial Chemistry Techniques
Drug Screening Assays, Antitumor
Female
Humans
Molecular Structure
Plicamycin
Streptomyces
Structure-Activity Relationship
Tumor Cells, Cultured

Chemicals

Antibiotics, Antineoplastic
Plicamycin

Word Cloud

Created with Highcharts 10.0.0+/-apoptosispathwayMTM25%inductionpLNBIVbiosyntheticNDPmithramycindrug1show6l-digitoxosefournew4patternsstructuressugarspositionscompounds3improved82%respectivelyhumanbreastcancercelllineparentPlasmidusedoverexpressnucleoside-diphosphate-activatedproducerStreptomycesargillaceusled"flooding"antitumorNDP-activateddeoxysugarsnormallyoccurconsequentlyproductionderivatives1-alteredsaccharidereflectproducednamelyintermediatesinfluencedglycosyltransferBDECremainedunaffecteduniquepreviouslyfoundsugardecorationariseeitherovercomingsubstratespecificityinhibitioncertainglycosyltransferasesGTsforeignexpressedTUNEL=terminaldeoxynucleotidyltransferase-mediateddUTPnickendlabelingassayrevealeddemycarosyl-3D-beta-d-digitoxosyl-MTMdeoliosyl-3C-beta-d-mycarosyl-MTMactivity6450estrogenreceptorER-positiveMCF-7compared37addition3A-deolivosyl-MTMsignificanteffectsER-negativeMDA-2316312inhibitedchemotherapeuticagentsurgentlyneededMithramycinanaloguesgeneratedcombinatorialbiosynthesisbioactivity

Similar Articles

Cited By (19)