Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization.

Isabel Tienda Luna, Yufei Huang, Yufang Yin, Diego P Ruiz Padillo, M Carmen Carrion Perez
Author Information
  1. Isabel Tienda Luna: Department of Applied Physics, University of Granada, Granada, Spain.

Abstract

We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.

References

  1. Bioinformatics. 2003 Nov 22;19(17):2271-82 [PMID: 14630656]
  2. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  3. Bioinformatics. 2004 Oct 12;20(15):2370-9 [PMID: 15073004]
  4. Trends Biotechnol. 2002 Nov;20(11):467-72 [PMID: 12413821]
  5. Mol Biol Cell. 1998 Dec;9(12):3273-97 [PMID: 9843569]
  6. Bioinformatics. 2005 Feb 1;21(3):349-56 [PMID: 15353451]
  7. Bioinformatics. 2004 Nov 1;20(16):2493-503 [PMID: 15130923]
  8. J Comput Biol. 2002;9(1):67-103 [PMID: 11911796]
  9. Curr Genet. 2002 Apr;41(1):1-10 [PMID: 12073094]
  10. Brief Bioinform. 2003 Sep;4(3):228-35 [PMID: 14582517]
  11. Bioinformatics. 2000 Aug;16(8):707-26 [PMID: 11099257]
  12. Pac Symp Biocomput. 2001;:422-33 [PMID: 11262961]
  13. Bioinformatics. 2003 Oct;19 Suppl 2:ii138-48 [PMID: 14534183]
  14. Bioinformatics. 2002 Feb;18(2):261-74 [PMID: 11847074]
  15. Physiol Genomics. 2000 Dec 18;4(2):127-135 [PMID: 11120873]
  16. Mol Cell. 1998 Jul;2(1):65-73 [PMID: 9702192]
  17. Science. 2004 Feb 6;303(5659):799-805 [PMID: 14764868]

Grants

  1. R21 AI067543-01A1/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0datanetworknetworksBayesianmicroarrayalgorithmcantopologygeneregulatorytime-seriesapplycellcyclevariationalstructuralexpectationmaximizationsetsinferredinvestigatepaperreverseengineeringdynamicDBNsmodelingregulationsdevelopinginferencefocussoftsolutionsprovideposterioriprobabilityAPPparticularproposelearnposteriordistributionmodelparametersjointlyalsoshowobtainedAPPsusedintegrationstrategyintegratetwodifferentproposedVBSEMtestedyeastevaluateconfidencemovingblockbootstrapmethodvalidatedcomparingKEGGpathwaymapUncovering

Similar Articles

Cited By