Evolution of complexity in RNA-like replicator systems.

Nobuto Takeuchi, Paulien Hogeweg
Author Information
  1. Nobuto Takeuchi: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. takeuchi.nobuto@gmail.com

Abstract

BACKGROUND: The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization--be it of molecules or ecosystems--is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization.
RESULTS: Here we investigate the evolution of complexity in a simulated RNA-like replicator system. The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of individual replicators, whereby we avoid preconceiving the functionality of genotypes (information) or the ecological organization of replicators in the model. In particular, the model assumes that interactions among replicators--to replicate or to be replicated--depend on their secondary structures and base-pair matching. The results showed that a population of replicators, originally consisting of one genotype, evolves to form a complex ecosystem of up to four species. During this diversification, the species evolve through acquiring unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that parasitic replicators, which have been thought to destabilize the replicator's diversity, actually promote the evolution of diversity through generating a novel "niche" for catalytic replicators. This also makes the current replicator system extremely stable upon the evolution of parasites. The results also show that the stability of the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynamics is shown to significantly depend on the mutation rate.
CONCLUSION: The interdependence of information and organization can play an important role for the evolution of complexity. Namely, the emergent ecosystem supplies a context in which a novel phenotype gains functionality. Realizing such a phenotype, novel genotypes can evolve, which, in turn, results in the evolution of more complex ecological organization. Hence, the evolutionary feedback between information and organization, and thereby the evolution of complexity.

References

  1. Science. 2004 Jul 2;305(5680):84-6 [PMID: 15232105]
  2. Orig Life Evol Biosph. 2003 Oct;33(4-5):319-55 [PMID: 14604181]
  3. Philos Trans R Soc Lond B Biol Sci. 2006 Oct 29;361(1474):1761-76 [PMID: 17008217]
  4. J Mol Evol. 1984;20(1):71-6 [PMID: 6429344]
  5. Trends Genet. 2005 Dec;21(12):647-54 [PMID: 16223546]
  6. Nature. 1979 Aug 9;280(5722):445-6 [PMID: 460422]
  7. RNA. 1998 Mar;4(3):268-75 [PMID: 9510329]
  8. Nucleic Acids Res. 1990 Oct 25;18(20):6097-100 [PMID: 2172928]
  9. J Theor Biol. 1980 Aug 7;85(3):399-405 [PMID: 6893729]
  10. Artif Life. 2004 Winter;10(1):23-38 [PMID: 15035861]
  11. Naturwissenschaften. 1971 Oct;58(10):465-523 [PMID: 4942363]
  12. RNA. 2007 Jan;13(1):97-107 [PMID: 17105993]
  13. J Theor Biol. 1998 Dec 7;195(3):329-38 [PMID: 9826487]
  14. J Theor Biol. 2000 Aug 7;205(3):409-31 [PMID: 10882561]
  15. Nature. 1999 Jul 22;400(6742):354-7 [PMID: 10432112]
  16. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4463-8 [PMID: 10781045]
  17. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8574-81 [PMID: 17494745]
  18. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8627-33 [PMID: 17494762]
  19. Evolution. 2001 Dec;55(12):2412-20 [PMID: 11831657]
  20. J Mol Evol. 1981;17(6):348-53 [PMID: 7288889]
  21. J Mol Evol. 2007 Dec;65(6):668-86 [PMID: 17955153]
  22. Orig Life Evol Biosph. 2003 Oct;33(4-5):375-403 [PMID: 14604183]
  23. Comput Appl Biosci. 1988 Aug;4(3):387-93 [PMID: 2458170]
  24. BMC Bioinformatics. 2006 Oct 10;7:439 [PMID: 17032440]
  25. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  26. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  27. Nature. 2003 Jun 12;423(6941):689 [PMID: 12802312]
  28. Naturwissenschaften. 1977 Nov;64(11):541-65 [PMID: 593400]
  29. J Theor Biol. 1987 Oct 21;128(4):463-86 [PMID: 2451771]
  30. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 [PMID: 17494740]
  31. Proc Biol Sci. 1994 Mar 22;255(1344):279-84 [PMID: 7517565]

MeSH Term

Base Sequence
Computer Simulation
Evolution, Molecular
Models, Genetic
Molecular Sequence Data
Monte Carlo Method
Mutation
RNA, Catalytic

Chemicals

RNA, Catalytic

Word Cloud

Created with Highcharts 10.0.0evolutioncomplexityinformationorganizationreplicatorssystemgeneticalsoreplicatormodelfunctionalitygenotypesecologicalresultsnovelamongimportantformationcontextRNA-likecomplexecosystemspeciesdiversificationevolvediversityevolutionarycanphenotypeBACKGROUND:questionsbiologyoftenobservedincreaseorganizationalwellrecognizedbiologicalorganization--bemoleculesecosystems--isultimatelyinstructedwhereastruefunctionalThereforeobtaincompletepicturemuststudyRESULTS:investigatesimulatedsimplicityallowsusexplicitlygenotype-phenotype-interactionmappingindividualwherebyavoidpreconceivingparticularassumesinteractionsreplicators--toreplicatereplicated--dependsecondarystructuresbase-pairmatchingshowedpopulationoriginallyconsistingonegenotypeevolvesformfouracquiringuniquedistinctanalysisrevealsparasiticthoughtdestabilizereplicator'sactuallypromotegenerating"niche"catalyticmakescurrentextremelystableuponparasitesshowstabilitycruciallydependsspatialpatternFinallydynamicsshownsignificantlydependmutationrateCONCLUSION:interdependenceplayroleNamelyemergentsuppliesgainsRealizingturnHencefeedbacktherebyEvolutionsystems

Similar Articles

Cited By (38)