Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice.

Kouhei Hashizume, Manabu Hirasawa, Yutaka Imamura, Setsuko Noda, Takahiko Shimizu, Kei Shinoda, Toshihide Kurihara, Kousuke Noda, Yoko Ozawa, Susumu Ishida, Yozo Miyake, Takuji Shirasawa, Kazuo Tsubota
Author Information
  1. Kouhei Hashizume: Department of Ophthalmology, Inaida Laboratory, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.

Abstract

The superoxide dismutase (SOD) family is a major antioxidant system, and deficiency of Cu,Zn-superoxide dismutase (SOD1) in mice leads to many different phenotypes that resemble accelerated aging. The purpose of this study was to examine the morphology and physiology of the sensory retina in Sod1(-/-) mice. The amplitudes of the a- and b-waves of electroretinograms elicited by stimuli of different intensity were reduced in senescent Sod1(-/-) mice, and this reduction in amplitude was more pronounced with increasing age. Retinal morphometric analyses showed a reduced number of nuclei in both the inner nuclear cell layer and outer nuclear cell layer. Electron microscopy revealed swollen cells and degenerated mitochondria in the inner nuclear cell and outer nuclear cell layer of senescent Sod1(-/-) mice indicating necrotic cell death. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling revealed no significant differences in the number of apoptotic cells between Sod1(-/-) and wild-type mice, and activated caspase-3 could not be detected in the retina of Sod1(-/-) mice. In addition to the age-related macular degeneration-like phenotypes previously reported, Sod1(-/-) mice also present progressive retinal degeneration. Our results indicate that Sod1(-/-) mice may be a good model system in which to study the mechanism of reactive oxygen species-mediated retinal degeneration.

References

  1. Arch Ophthalmol. 2001 Oct;119(10):1439-52 [PMID: 11594943]
  2. Vision Res. 2006 Apr;46(8-9):1422-31 [PMID: 16242751]
  3. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2392-400 [PMID: 12091442]
  4. Retina. 1997;17(2):105-8 [PMID: 9143037]
  5. Vision Res. 2002 Feb;42(4):517-25 [PMID: 11853768]
  6. Invest Ophthalmol Vis Sci. 1999 Jul;40(8):1802-7 [PMID: 10393051]
  7. Lancet. 2006 Nov 18;368(9549):1795-809 [PMID: 17113430]
  8. Biochem Biophys Res Commun. 2002 Aug 23;296(3):729-36 [PMID: 12176043]
  9. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12584-9 [PMID: 11592982]
  10. J Comp Neurol. 1999 Oct 11;413(1):101-12 [PMID: 10464373]
  11. Invest Ophthalmol Vis Sci. 1998 Mar;39(3):471-5 [PMID: 9501855]
  12. Vis Neurosci. 1994 May-Jun;11(3):519-32 [PMID: 8038126]
  13. Nat Genet. 1995 Dec;11(4):376-81 [PMID: 7493016]
  14. Invest Ophthalmol Vis Sci. 2004 Sep;45(9):3271-8 [PMID: 15326151]
  15. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11300-5 [PMID: 16849425]
  16. Am J Pathol. 2006 Jul;169(1):132-41 [PMID: 16816367]
  17. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11282-7 [PMID: 16844785]
  18. Biochem J. 2007 Mar 1;402(2):219-27 [PMID: 17059387]
  19. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):62-71 [PMID: 7822160]
  20. Prog Retin Eye Res. 2006 May;25(3):249-76 [PMID: 16580242]
  21. J Biol Chem. 2002 May 10;277(19):17016-22 [PMID: 11861639]
  22. J Biol Chem. 2006 Oct 20;281(42):31713-9 [PMID: 16921198]
  23. Arch Ophthalmol. 2006 Mar;124(3):345-52 [PMID: 16534054]
  24. Endocrinology. 1998 Sep;139(9):4008-11 [PMID: 9724058]
  25. Curr Eye Res. 2006 Jul-Aug;31(7-8):635-44 [PMID: 16877272]
  26. Annu Rev Biochem. 2005;74:563-93 [PMID: 15952898]
  27. Doc Ophthalmol. 2004 Jul;109(1):1-8 [PMID: 15675195]
  28. Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2173-8 [PMID: 11527927]
  29. Oncogene. 2005 Jan 13;24(3):367-80 [PMID: 15531919]
  30. Hum Mol Genet. 2000 Mar 1;9(4):645-51 [PMID: 10699188]
  31. Cytokine. 1993 Nov;5(6):546-55 [PMID: 8186366]
  32. Mol Vis. 1998 Mar 02;4:5 [PMID: 9485488]
  33. Exp Eye Res. 2005 Nov;81(5):503-12 [PMID: 16026784]
  34. Audiology. 2001 Nov-Dec;40(6):313-21 [PMID: 11781044]
  35. Annu Rev Neurosci. 2003;26:657-700 [PMID: 14527271]
  36. Free Radic Biol Med. 2006 Jun 1;40(11):1993-2004 [PMID: 16716900]
  37. Mol Vis. 2000 Jul 08;6:116-24 [PMID: 10889272]
  38. J Cell Physiol. 2006 Sep;208(3):516-26 [PMID: 16741961]
  39. Ophthalmic Res. 1998;30(6):368-73 [PMID: 9731118]
  40. Am J Pathol. 2004 Feb;164(2):701-10 [PMID: 14742273]

MeSH Term

Aging
Animals
Apoptosis
Caspase 3
Cell Nucleus
Crosses, Genetic
Electroretinography
Mice
Mice, Inbred C57BL
Mice, Knockout
Necrosis
Retina
Retinal Degeneration
Superoxide Dismutase
Superoxide Dismutase-1

Chemicals

Sod1 protein, mouse
Superoxide Dismutase
Superoxide Dismutase-1
Caspase 3

Word Cloud

Created with Highcharts 10.0.0miceSod1-/-cellnuclearlayerretinaldismutasesystemdifferentphenotypesstudyretinareducedsenescentRetinalnumberinnerouterrevealedcellsdeathprogressivedegenerationsuperoxideSODfamilymajorantioxidantdeficiencyCuZn-superoxideSOD1leadsmanyresembleacceleratedagingpurposeexaminemorphologyphysiologysensoryamplitudesa-b-waveselectroretinogramselicitedstimuliintensityreductionamplitudepronouncedincreasingagemorphometricanalysesshowednucleiElectronmicroscopyswollendegeneratedmitochondriaindicatingnecroticTerminaldeoxynucleotidyltransferase-mediateddUTPnickendlabelingsignificantdifferencesapoptoticwild-typeactivatedcaspase-3detectedadditionage-relatedmaculardegeneration-likepreviouslyreportedalsopresentresultsindicatemaygoodmodelmechanismreactiveoxygenspecies-mediateddysfunctionSOD1-deficient

Similar Articles

Cited By