Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX.

Dax Kepshire, Scott C Davis, Hamid Dehghani, Keith D Paulsen, Brian W Pogue
Author Information
  1. Dax Kepshire: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Dax@Dartmouth.edu

Abstract

Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue.

References

  1. Appl Opt. 2007 Apr 1;46(10):1669-78 [PMID: 17356609]
  2. Int J Oncol. 2002 Sep;21(3):577-82 [PMID: 12168102]
  3. J Biomed Opt. 2005 Sep-Oct;10(5):051504 [PMID: 16292948]
  4. Opt Lett. 2003 Mar 1;28(5):337-9 [PMID: 12659436]
  5. Photochem Photobiol. 1999 Jul;70(1):87-94 [PMID: 10420847]
  6. Phys Rev Lett. 2003 Sep 5;91(10):103901 [PMID: 14525478]
  7. Appl Opt. 2004 Feb 10;43(5):1053-62 [PMID: 15008484]
  8. Appl Opt. 2003 Jun 1;42(16):3117-28 [PMID: 12790463]
  9. Lancet Oncol. 2006 May;7(5):392-401 [PMID: 16648043]
  10. Appl Opt. 1999 May 1;38(13):2950-61 [PMID: 18319877]
  11. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8828-33 [PMID: 16731633]
  12. Radiology. 2001 Jan;218(1):261-6 [PMID: 11152812]
  13. Med Phys. 1992 Jul-Aug;19(4):879-88 [PMID: 1518476]
  14. Appl Opt. 2003 Jan 1;42(1):135-45 [PMID: 12518832]
  15. Med Phys. 1995 Jun;22(6):691-701 [PMID: 7565358]
  16. Curr Opin Chem Biol. 2002 Oct;6(5):642-50 [PMID: 12413549]
  17. Nat Med. 2002 Jul;8(7):757-60 [PMID: 12091907]
  18. Lasers Surg Med. 2004;35(3):181-90 [PMID: 15389738]
  19. Technol Cancer Res Treat. 2004 Feb;3(1):15-21 [PMID: 14750889]
  20. Opt Express. 1999 Apr 12;4(8):270-86 [PMID: 19396284]
  21. J Cereb Blood Flow Metab. 2003 Aug;23(8):911-24 [PMID: 12902835]
  22. Opt Lett. 2006 Oct 1;31(19):2876-8 [PMID: 16969408]
  23. Nat Biotechnol. 2005 Mar;23(3):313-20 [PMID: 15765087]
  24. Phys Med Biol. 1995 Oct;40(10):1709-29 [PMID: 8532750]
  25. Photochem Photobiol. 2007 May-Jun;83(3):738-48 [PMID: 17576383]
  26. Opt Express. 2001 Sep 10;9(6):272-86 [PMID: 19421298]
  27. Technol Cancer Res Treat. 2003 Dec;2(6):553-62 [PMID: 14640766]
  28. Phys Med Biol. 2002 Dec 7;47(23):4155-66 [PMID: 12502040]
  29. Appl Opt. 1994 Apr 1;33(10):1963-74 [PMID: 20885531]
  30. IEEE Trans Med Imaging. 2005 Oct;24(10):1377-86 [PMID: 16229423]
  31. J Biomed Opt. 2003 Jan;8(1):102-10 [PMID: 12542386]
  32. Curr Mol Med. 2004 Jun;4(4):419-30 [PMID: 15354872]
  33. Neuroimage. 2004 Jan;21(1):372-86 [PMID: 14741675]
  34. J Biomed Opt. 2005 Sep-Oct;10(5):050501 [PMID: 16292936]
  35. Eur Radiol. 2003 Jan;13(1):195-208 [PMID: 12541130]
  36. Neoplasia. 2005 Mar;7(3):263-70 [PMID: 15799826]
  37. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2767-72 [PMID: 10706610]
  38. Neoplasia. 2002 Jul-Aug;4(4):347-54 [PMID: 12082551]
  39. Appl Opt. 2001 Feb 1;40(4):588-600 [PMID: 18357035]
  40. AJR Am J Roentgenol. 2005 Jun;184(6):1774-81 [PMID: 15908529]

Grants

  1. U54CA105480/NCI NIH HHS
  2. P01 CA084203-020003/NCI NIH HHS
  3. R01 CA109558/NCI NIH HHS
  4. U54 CA105480/NCI NIH HHS
  5. R01 CA109558-05/NCI NIH HHS
  6. R01CA109558/NCI NIH HHS
  7. U54 CA105480-010002/NCI NIH HHS
  8. P01CA84203/NCI NIH HHS
  9. P01 CA084203/NCI NIH HHS

MeSH Term

Contrast Media
Image Enhancement
Image Interpretation, Computer-Assisted
Microscopy, Fluorescence
Phantoms, Imaging
Protoporphyrins
Reproducibility of Results
Sensitivity and Specificity
Tomography, Optical

Chemicals

Contrast Media
Protoporphyrins
protoporphyrin IX

Word Cloud

Created with Highcharts 10.0.0imagingtissuefluorescencefluorescentembeddedsub-surfacetomographycontrastFRIFDOTIXperformedablerecoverhighdepthregionsOpticalobjectssimulatingmediumcharacterizedusingnon-contactbasedapproachesremittancediffuseopticalUsingProtoporphyrinagentexperimentsphantomscomprisedtypicalin-vivotumornormalratiosranging35:110:1foundtomographicinteriorinclusionsrelativebackgroundhoweversimpleplanarprovidedsuperiornoiseratioOveralloptimallyobjectlocatedclosesurfaceperhapsimportantlyspecificinformationlocationresultsindicateoptimalsystemlocalizingcombinereflectancesensitivitydetectiontherebyallowingaccuratelocalizationthreedirectionswithinFluorescencecharacterizationprotoporphyrin

Similar Articles

Cited By