A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.

Travis N Mavrich, Ilya P Ioshikhes, Bryan J Venters, Cizhong Jiang, Lynn P Tomsho, Ji Qi, Stephan C Schuster, Istvan Albert, B Franklin Pugh
Author Information
  1. Travis N Mavrich: Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract

Most nucleosomes are well-organized at the 5' ends of S. cerevisiae genes where "-1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the -1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3' NFR that is present at >95% of all genes. 3' NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3' NFRs in gene looping.

References

  1. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  2. J Mol Biol. 2006 Aug 25;361(4):617-24 [PMID: 16860337]
  3. Nature. 2007 Mar 29;446(7135):572-6 [PMID: 17392789]
  4. Nat Genet. 2007 Oct;39(10):1235-44 [PMID: 17873876]
  5. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51-5 [PMID: 6572008]
  6. Comput Appl Biosci. 1996 Oct;12(5):383-9 [PMID: 8996786]
  7. J Cell Biochem. 1994 May;55(1):83-92 [PMID: 8083303]
  8. Curr Opin Cell Biol. 2007 Jun;19(3):250-6 [PMID: 17466507]
  9. EMBO J. 1995 Jun 1;14(11):2570-9 [PMID: 7781610]
  10. Nature. 1981 Aug 13;292(5824):579-80 [PMID: 7254354]
  11. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1183-8 [PMID: 9037027]
  12. Nat Genet. 2006 Oct;38(10):1210-5 [PMID: 16964265]
  13. Nucleic Acids Res. 2007;35(18):6063-74 [PMID: 17766249]
  14. BMC Bioinformatics. 2006 Mar 07;7:113 [PMID: 16522208]
  15. Mol Cell. 2002 Dec;10(6):1441-52 [PMID: 12504018]
  16. Mol Cell Biol. 1990 May;10(5):2247-60 [PMID: 2183026]
  17. FEBS Lett. 2002 Jul 17;523(1-3):7-11 [PMID: 12123795]
  18. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  19. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  20. EMBO J. 1992 Mar;11(3):1187-93 [PMID: 1547779]
  21. Cell. 2005 Dec 29;123(7):1187-90 [PMID: 16377560]
  22. Mol Cell. 2007 Sep 7;27(5):806-16 [PMID: 17803944]
  23. Nat Genet. 2004 Aug;36(8):900-5 [PMID: 15247917]
  24. EMBO J. 2008 Jan 9;27(1):100-10 [PMID: 18059476]
  25. Mol Cell Biol. 1992 Jun;12(6):2633-43 [PMID: 1588961]
  26. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7418-22 [PMID: 2798415]
  27. Mol Cell Biol. 2001 Jun;21(11):3830-9 [PMID: 11340174]
  28. Genes Dev. 2006 Aug 15;20(16):2250-65 [PMID: 16912275]
  29. Q Rev Biophys. 2001 Aug;34(3):269-324 [PMID: 11838235]
  30. Cell. 2004 Mar 5;116(5):699-709 [PMID: 15006352]
  31. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  32. Nat Struct Mol Biol. 2005 Jan;12(1):46-53 [PMID: 15580276]
  33. Prog Nucleic Acid Res Mol Biol. 1991;40:143-84 [PMID: 2031082]
  34. Genome Biol. 2004;5(9):R62 [PMID: 15345046]
  35. Nucleic Acids Res. 2007;35(19):e128 [PMID: 17897965]
  36. Nature. 2007 Dec 13;450(7172):1031-5 [PMID: 18075583]
  37. PLoS Biol. 2008 Mar 18;6(3):e65 [PMID: 18351804]
  38. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5320-5 [PMID: 16569694]
  39. Science. 1997 May 2;276(5313):809-12 [PMID: 9115208]
  40. Nucleic Acids Res. 2000 Nov 1;28(21):4083-9 [PMID: 11058103]
  41. J Mol Biol. 1996 Jun 21;259(4):579-88 [PMID: 8683566]
  42. J Mol Biol. 2000 Jan 7;295(1):71-83 [PMID: 10623509]
  43. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  44. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62 [PMID: 16895995]
  45. Cell. 2005 Oct 21;123(2):233-48 [PMID: 16239142]
  46. Genome Res. 2007 Aug;17(8):1170-7 [PMID: 17620451]
  47. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  48. Mol Cell Biol. 1997 Dec;17(12):6982-93 [PMID: 9372930]
  49. Mol Cell. 2005 Jun 10;18(6):735-48 [PMID: 15949447]
  50. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  51. J Mol Biol. 1996 Sep 20;262(2):129-39 [PMID: 8831784]
  52. J Biomol Struct Dyn. 2005 Jun;22(6):687-94 [PMID: 15842173]
  53. Genome Res. 2006 Dec;16(12):1505-16 [PMID: 17038564]
  54. Mol Cell Biol. 1999 Aug;19(8):5393-404 [PMID: 10409730]

Grants

  1. R01 HG004160/NHGRI NIH HHS
  2. HG004160/NHGRI NIH HHS

MeSH Term

3' Untranslated Regions
Chromosome Mapping
Chromosomes, Fungal
DNA, Fungal
Genome, Fungal
Models, Genetic
Nucleosomes
Promoter Regions, Genetic
Saccharomyces cerevisiae

Chemicals

3' Untranslated Regions
DNA, Fungal
Nucleosomes

Word Cloud

Created with Highcharts 10.0.0nucleosomesgenesorganizationnucleosomebarrierpresent3'ScerevisiaeNFRgenomegenomicthroughoutstatistical+1positioningNFRswell-organized5'ends"-1""+1"bracketnucleosome-freepromoterregionnucleosomalspecifiedlessclearestablishinter-relaterulesgoverningsequencingDNAonemillionimmunopurifieddisplayedhttp://atlasbxpsuedu/Evidencepresentedlargelyconsequencepackingprinciplessequencespecifieslocation-1formspackedresultinguniformdecaysfartherdistancesevidencenovel>95%mayimportanttranscriptionterminationanti-senseinitiationhigh-resolutiongenome-widemapTFIIBlocationsimplicatesgeneloopingmodelyeast

Similar Articles

Cited By