Phenotypic switching in Cryptococcus neoformans contributes to virulence by changing the immunological host response.

Abraham Guerrero, Bettina C Fries
Author Information
  1. Abraham Guerrero: Departments of Microbiology and Immunology, Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Abstract

Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10(-/-)) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10(-/-) mice survived longer than wild-type mice, whereas MC-infected IL-10(-/-) mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10(-/-) and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10(-/-) and wild-type mice. In contrast, both SM-infected IL-10(-/-) and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10(-/-) and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10(-/-) mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.

References

  1. Cell Immunol. 1999 Apr 10;193(1):9-16 [PMID: 10202108]
  2. J Immunol. 1996 Nov 15;157(10):4529-36 [PMID: 8906831]
  3. J Immunol. 2002 May 1;168(9):4659-66 [PMID: 11971015]
  4. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14967-72 [PMID: 9843999]
  5. Infect Immun. 1993 Nov;61(11):4750-9 [PMID: 8406874]
  6. Immunity. 2008 Apr;28(4):454-67 [PMID: 18400188]
  7. Nat Rev Microbiol. 2003 Oct;1(1):17-24 [PMID: 15040176]
  8. Eur J Clin Microbiol Infect Dis. 2001 Aug;20(8):535-43 [PMID: 11681432]
  9. J Immunol. 2000 Feb 15;164(4):2021-7 [PMID: 10657654]
  10. J Exp Med. 2005 Aug 1;202(3):437-44 [PMID: 16043519]
  11. Clin Infect Dis. 1996 Jul;23(1):82-90 [PMID: 8816134]
  12. Eur Respir J. 1995 May;8(5):834-42 [PMID: 7656959]
  13. J Infect Dis. 2001 Jan 1;183(1):51-8 [PMID: 11087201]
  14. Infect Dis Clin North Am. 2002 Dec;16(4):837-74, v-vi [PMID: 12512184]
  15. Infect Immun. 1999 Nov;67(11):6076-83 [PMID: 10531269]
  16. J Infect Dis. 2000 Feb;181(2):733-6 [PMID: 10669365]
  17. Eur J Immunol. 1999 Feb;29(2):643-9 [PMID: 10064081]
  18. Infect Immun. 1993 Feb;61(2):464-9 [PMID: 8423074]
  19. Transpl Immunol. 2006 Aug;16(2):69-72 [PMID: 16860707]
  20. Infect Immun. 2003 Jan;71(1):68-74 [PMID: 12496150]
  21. AIDS. 1999 Nov 12;13(16):2197-207 [PMID: 10563705]
  22. Infect Immun. 2000 Jul;68(7):4225-37 [PMID: 10858240]
  23. J Leukoc Biol. 1994 Jan;55(1):35-42 [PMID: 7904293]
  24. Infect Immun. 1998 Oct;66(10):5027-30 [PMID: 9746613]
  25. Infect Immun. 1993 Jul;61(7):2854-65 [PMID: 8514388]
  26. Lancet Infect Dis. 2006 Sep;6(9):557-69 [PMID: 16931407]
  27. Clin Microbiol Infect. 2005 Apr;11(4):296-300 [PMID: 15760426]
  28. Infect Immun. 2001 Oct;69(10):6445-55 [PMID: 11553589]
  29. Eur J Immunol. 2008 Jul;38(7):1807-13 [PMID: 18506885]
  30. Infect Immun. 1999 Jul;67(7):3601-9 [PMID: 10377145]
  31. Clin Infect Dis. 2004 Oct 15;39(8):e78-82 [PMID: 15486830]
  32. Nat Rev Immunol. 2003 Jun;3(6):454-62 [PMID: 12776205]
  33. Infect Immun. 2000 Nov;68(11):6147-53 [PMID: 11035718]
  34. Cell Immunol. 1999 Oct 10;197(1):55-61 [PMID: 10555996]
  35. J Infect Dis. 1999 Nov;180(5):1637-47 [PMID: 10515827]
  36. J Infect Dis. 1998 Dec;178(6):1761-6 [PMID: 9815230]
  37. Eukaryot Cell. 2007 Aug;6(8):1464-73 [PMID: 17601878]
  38. Infect Immun. 1998 Jan;66(1):89-97 [PMID: 9423844]
  39. Infect Immun. 2004 Jun;72(6):3359-65 [PMID: 15155641]
  40. J Immunol. 2008 Apr 15;180(8):5157-62 [PMID: 18390695]
  41. J Immunol. 2004 Jun 1;172(11):7169-76 [PMID: 15153541]
  42. FEMS Yeast Res. 2006 Jun;6(4):537-42 [PMID: 16696649]
  43. J Immunol. 2007 Oct 15;179(8):5367-77 [PMID: 17911623]
  44. J Immunol. 1998 Apr 1;160(7):3555-61 [PMID: 9531318]
  45. J Immunol. 1998 Mar 1;160(5):2393-400 [PMID: 9498782]
  46. Am J Respir Cell Mol Biol. 1995 Oct;13(4):487-95 [PMID: 7546779]
  47. Cell Microbiol. 2003 Aug;5(8):513-22 [PMID: 12864811]
  48. J Clin Invest. 2001 Dec;108(11):1639-48 [PMID: 11733559]
  49. J Infect. 2007 Mar;54(3):e165-8 [PMID: 17109966]
  50. Hum Pathol. 1996 Aug;27(8):839-47 [PMID: 8760020]
  51. Infect Immun. 1994 Jul;62(7):2930-9 [PMID: 7911788]
  52. Infect Immun. 1999 Sep;67(9):4620-7 [PMID: 10456908]
  53. Antimicrob Agents Chemother. 2005 Jan;49(1):350-7 [PMID: 15616315]
  54. Infect Immun. 1995 May;63(5):1899-905 [PMID: 7729900]
  55. Res Immunol. 1998 May-Jun;149(4-5):387-96; discussion 512-4 [PMID: 9720956]
  56. Nature. 2007 Jul 26;448(7152):484-487 [PMID: 17581588]
  57. Infect Immun. 1997 Apr;65(4):1307-12 [PMID: 9119466]
  58. J Immunol. 2000 Dec 1;165(11):6429-36 [PMID: 11086082]
  59. Infect Immun. 1998 Oct;66(10):4994-5000 [PMID: 9746609]
  60. J Infect Dis. 2001 Aug 1;184(3):337-44 [PMID: 11443560]
  61. J Immunol. 2005 Jan 15;174(2):1027-36 [PMID: 15634927]
  62. J Immunol. 1995 Oct 1;155(7):3507-16 [PMID: 7561046]
  63. Infect Immun. 2007 Jun;75(6):2729-39 [PMID: 17371865]
  64. J Immunol. 1997 Jul 1;159(1):318-27 [PMID: 9200469]

Grants

  1. R01 AI059681/NIAID NIH HHS
  2. R01 AI059681-05/NIAID NIH HHS
  3. R0-1 AI 59681/NIAID NIH HHS

MeSH Term

Animals
Antigenic Variation
CD4-Positive T-Lymphocytes
CD8-Positive T-Lymphocytes
Colony Count, Microbial
Cryptococcosis
Cryptococcus neoformans
Cytokines
Female
Interleukin-10
Killer Cells, Natural
Lung
Macrophages
Mice
Mice, Inbred BALB C
Mice, Knockout
Survival Analysis
Virulence

Chemicals

Cytokines
Interleukin-10

Word Cloud

Created with Highcharts 10.0.0miceIL-10-/-MC-infectedSM-infectedwild-typeMChostresponseSMresponseslevelssurvivalTh1-polarizedinflammatoryrecruitmenthigherCryptococcusneoformansswitchingcolonyvarianttissueSM-exhibitwhereasdifferencesenhancedcellsfactorencapsulatedopportunisticorganismcanundergophenotypicprocessparentsmoothswitchesvirulentmucoidmountedvariantsdifferlowerinterleukin10consistentlyobservedlungsC57BL/6BALB/csuggesteddifferentrolescytokineinfectionsobjectivestudycompareratescharacterizeIL-10-depletedimmuneconsideredresistanthostsexpectedsurvivedlongerbenefitConsistentobservationdemonstratedmarkedincludedmacrophagesnaturalkillerCD8MC-contrastexhibitedCD4consistentTh1/Th2polarizationLungIL-21IL-6IL-4transforminggrowthbetaIL-12gammainterferontumornecrosisalphaconclusionelicitsexcessiveenvironmentthereforeoutcomenegativelyaffectedabsencePhenotypiccontributesvirulencechangingimmunological

Similar Articles

Cited By