Assessing the performance of implicit solvation models at a nucleic acid surface.

Feng Dong, Jason A Wagoner, Nathan A Baker
Author Information
  1. Feng Dong: Merck & Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA. feng_dong@merck.com

Abstract

Implicit solvation models are popular alternatives to explicit solvent methods due to their ability to "pre-average" solvent behavior and thus reduce the need for computationally-expensive sampling. Previously, we have demonstrated that Poisson-Boltzmann models for polar solvation and integral-based models for nonpolar solvation can reproduce explicit solvation forces in a low-charge density protein system. In the present work, we examine the ability of these continuum models to describe solvation forces at the surface of a RNA hairpin. While these models do not completely describe all of the details of solvent behavior at this highly-charged biomolecular interface, they do provide a reasonable description of average solvation forces and therefore show significant promise for developing more robust implicit descriptions of solvent around nucleic acid systems for use in biomolecular simulation and modeling. Additionally, we observe fairly good transferability in the nonpolar model parameters optimized for protein systems, suggesting its robustness for modeling general nonpolar solvation phenomena in biomolecular systems.

References

  1. J Phys Chem B. 2008 Jan 24;112(3):938-46 [PMID: 18171044]
  2. Annu Rev Biophys Biophys Chem. 1986;15:163-93 [PMID: 2424473]
  3. J Comput Chem. 2008 May;29(7):1113-30 [PMID: 18074338]
  4. Langmuir. 2008 Feb 19;24(4):1271-83 [PMID: 18220430]
  5. Methods Enzymol. 2004;383:94-118 [PMID: 15063648]
  6. J Chem Phys. 2005 Jan 8;122(2):024506 [PMID: 15638597]
  7. J Chem Phys. 2007 Aug 28;127(8):084119 [PMID: 17764241]
  8. Bioinformatics. 2007 Jan 15;23(2):e99-103 [PMID: 17237112]
  9. Biophys J. 2007 Nov 1;93(9):3202-9 [PMID: 17604318]
  10. Curr Opin Struct Biol. 1998 Apr;8(2):211-7 [PMID: 9631295]
  11. Biophys J. 1999 Oct;77(4):1769-81 [PMID: 10512802]
  12. J Am Chem Soc. 2007 May 16;129(19):6060-1 [PMID: 17455935]
  13. Biophys J. 2003 Jun;84(6):3564-82 [PMID: 12770867]
  14. J Chem Phys. 2007 Oct 21;127(15):155101 [PMID: 17949217]
  15. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7560-5 [PMID: 16670200]
  16. Curr Opin Struct Biol. 2001 Apr;11(2):243-52 [PMID: 11297935]
  17. Curr Opin Struct Biol. 2004 Apr;14(2):217-24 [PMID: 15093837]
  18. Biophys J. 1998 Apr;74(4):1744-53 [PMID: 9545037]
  19. J Chem Phys. 2007 Mar 28;126(12):124107 [PMID: 17411108]
  20. Biopolymers. 2000-2001;56(4):266-74 [PMID: 11754340]
  21. J Am Chem Soc. 2007 Nov 28;129(47):14739-45 [PMID: 17985896]
  22. J Phys Chem B. 2007 Jun 14;111(23):6469-78 [PMID: 17518490]
  23. Curr Opin Struct Biol. 2006 Apr;16(2):142-51 [PMID: 16540310]
  24. J Mol Biol. 1998 Oct 2;282(4):859-73 [PMID: 9743632]
  25. J Phys Chem B. 2007 Aug 2;111(30):9036-44 [PMID: 17602581]
  26. Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14771-5 [PMID: 15465909]
  27. J Comput Chem. 2004 Mar;25(4):479-99 [PMID: 14735568]
  28. Biophys J. 1997 Nov;73(5):2313-36 [PMID: 9370428]
  29. J Comput Chem. 2004 Dec;25(16):2049-64 [PMID: 15481091]
  30. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8331-6 [PMID: 16709675]
  31. Biophys J. 1998 Jul;75(1):150-8 [PMID: 9649375]
  32. Biophys J. 2004 Aug;87(2):800-11 [PMID: 15298889]
  33. J Phys Chem B. 2006 Sep 21;110(37):18680-7 [PMID: 16970499]
  34. J Mol Biol. 2000 Oct 6;302(5):1101-17 [PMID: 11183777]
  35. Nature. 2002 May 30;417(6888):491 [PMID: 12037545]
  36. J Am Chem Soc. 2006 Nov 15;128(45):14506-18 [PMID: 17090034]
  37. J Chem Theory Comput. 2007 Jan 1;3(1):156-169 [PMID: 21072141]
  38. Phys Rev Lett. 2006 Mar 3;96(8):087802 [PMID: 16606226]
  39. J Mol Biol. 2007 Mar 9;366(5):1475-96 [PMID: 17223134]
  40. Curr Opin Struct Biol. 2007 Jun;17(3):325-33 [PMID: 17574833]
  41. J Mol Biol. 2001 Nov 30;314(3):619-32 [PMID: 11846571]
  42. Phys Rev Lett. 2004 Sep 3;93(10):108104 [PMID: 15447456]
  43. J Chem Theory Comput. 2007 Nov;3(6):2034-45 [PMID: 26636199]
  44. J Phys Chem B. 2006 Feb 23;110(7):3308-22 [PMID: 16494345]
  45. J Mol Biol. 2001 Feb 2;305(5):1057-72 [PMID: 11162114]
  46. J Phys Chem B. 2006 Sep 7;110(35):17616-26 [PMID: 16942107]
  47. J Mol Biol. 1999 Mar 5;286(4):1075-95 [PMID: 10047483]
  48. Adv Protein Chem. 2003;66:27-85 [PMID: 14631816]
  49. J Comput Chem. 2002 Oct;23(13):1244-53 [PMID: 12210150]
  50. J Comput Chem. 2002 Apr 15;23(5):517-29 [PMID: 11948578]
  51. Biochim Biophys Acta. 2006 Nov;1764(11):1647-76 [PMID: 17049320]
  52. J Mol Biol. 2000 Jul 28;300(5):1113-31 [PMID: 10903858]
  53. Cell. 1996 Jun 28;85(7):1057-65 [PMID: 8674112]
  54. J Phys Chem B. 2008 Feb 28;112(8):2405-14 [PMID: 18251538]
  55. J Chem Theory Comput. 2007 Jan;3(1):170-83 [PMID: 26627162]
  56. J Am Chem Soc. 2004 Jun 2;126(21):6739-50 [PMID: 15161302]
  57. J Phys Chem B. 2006 Jun 15;110(23):11421-6 [PMID: 16771415]
  58. J Chem Phys. 2007 Mar 28;126(12):124114 [PMID: 17411115]
  59. J Chem Phys. 2007 May 21;126(19):195102 [PMID: 17523838]
  60. Science. 2008 Feb 29;319(5867):1197-8 [PMID: 18309069]
  61. J Chem Phys. 2005 Jan 22;122(4):44903 [PMID: 15740294]
  62. Methods Cell Biol. 2008;84:843-70 [PMID: 17964951]
  63. Biophys Chem. 1999 Apr 5;78(1-2):1-20 [PMID: 17030302]
  64. J Am Chem Soc. 2006 Sep 20;128(37):12042-3 [PMID: 16967934]
  65. Annu Rev Phys Chem. 2000;51:129-52 [PMID: 11031278]
  66. J Comput Chem. 2004 Oct;25(13):1623-9 [PMID: 15264256]
  67. J Chem Phys. 2006 Feb 28;124(8):084905 [PMID: 16512740]
  68. J Phys Chem B. 2005 Feb 24;109(7):3008-22 [PMID: 16851315]
  69. Biopolymers. 2000-2001;56(4):275-91 [PMID: 11754341]
  70. Curr Opin Struct Biol. 2008 Apr;18(2):140-8 [PMID: 18304802]
  71. J Biomol NMR. 2005 Jul;32(3):179-93 [PMID: 16132819]
  72. J Comput Chem. 2004 Dec;25(16):1967-78 [PMID: 15470756]
  73. J Chem Phys. 2006 Nov 28;125(20):204504 [PMID: 17144712]
  74. J Comput Chem. 2002 Nov 15;23(14):1297-304 [PMID: 12214312]
  75. Annu Rev Biophys Biophys Chem. 1990;19:301-32 [PMID: 2194479]
  76. J Phys Chem B. 2006 Sep 21;110(37):18553-9 [PMID: 16970483]
  77. J Chem Phys. 2004 Nov 22;121(20):10096-103 [PMID: 15549884]
  78. Biophys J. 2005 Dec;89(6):3721-40 [PMID: 16169978]
  79. J Mol Recognit. 2002 Nov-Dec;15(6):377-92 [PMID: 12501158]
  80. J Mol Biol. 2001 Nov 9;313(5):1073-91 [PMID: 11700064]
  81. Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12336-40 [PMID: 17636124]
  82. J Mol Biol. 1973 Sep 15;79(2):351-71 [PMID: 4760134]
  83. Biopolymers. 2000-2001;56(4):232-56 [PMID: 11754338]
  84. Phys Rev Lett. 2007 Nov 30;99(22):226104 [PMID: 18233302]
  85. Biopolymers. 1998;48(4):199-209 [PMID: 10699840]
  86. J Am Chem Soc. 2003 Aug 6;125(31):9523-30 [PMID: 12889983]
  87. Phys Chem Chem Phys. 2007 Sep 21;9(35):4913-22 [PMID: 17912422]
  88. Biopolymers. 2008 Feb;89(2):93-113 [PMID: 17969016]
  89. J Chem Theory Comput. 2006 Mar;2(2):420-33 [PMID: 26626529]
  90. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W38-42 [PMID: 16845031]

Grants

  1. R01 GM069702-04/NIGMS NIH HHS
  2. R01 GM 069702/NIGMS NIH HHS
  3. R01 GM069702/NIGMS NIH HHS
  4. R01 GM069702-02/NIGMS NIH HHS
  5. R01 GM069702-03/NIGMS NIH HHS
  6. R01 GM069702-05/NIGMS NIH HHS

MeSH Term

Models, Molecular
Nucleic Acid Conformation
RNA
Solvents

Chemicals

Solvents
RNA

Word Cloud

Created with Highcharts 10.0.0solvationmodelssolventnonpolarforcesbiomolecularsystemsexplicitabilitybehaviorproteindescribesurfaceimplicitnucleicacidmodelingImplicitpopularalternativesmethodsdue"pre-average"thusreduceneedcomputationally-expensivesamplingPreviouslydemonstratedPoisson-Boltzmannpolarintegral-basedcanreproducelow-chargedensitysystempresentworkexaminecontinuumRNAhairpincompletelydetailshighly-chargedinterfaceprovidereasonabledescriptionaveragethereforeshowsignificantpromisedevelopingrobustdescriptionsaroundusesimulationAdditionallyobservefairlygoodtransferabilitymodelparametersoptimizedsuggestingrobustnessgeneralphenomenaAssessingperformance

Similar Articles

Cited By