The evolution of strand preference in simulated RNA replicators with strand displacement: implications for the origin of transcription.

Nobuto Takeuchi, Laura Salazar, Anthony M Poole, Paulien Hogeweg
Author Information
  1. Nobuto Takeuchi: Theoretical Biology and Bioinformatics Group, Utrecht University, Utrecht, The Netherlands. takeuchi.nobuto@gmail.com

Abstract

BACKGROUND: The simplest conceivable example of evolving systems is RNA molecules that can replicate themselves. Since replication produces a new RNA strand complementary to a template, all templates would eventually become double-stranded and, hence, become unavailable for replication. Thus the problem of how to separate the two strands is considered a major issue for the early evolution of self-replicating RNA. One biologically plausible way to copy a double-stranded RNA is to displace a preexisting strand by a newly synthesized strand. Such copying can in principle be initiated from either the (+) or (-) strand of a double-stranded RNA. Assuming that only one of them, say (+), can act as replicase when single-stranded, strand displacement produces a new replicase if the (-) strand is the template. If, however, the (+) strand is the template, it produces a new template (but no replicase). Modern transcription exhibits extreme strand preference wherein anti-sense strands are always the template. Likewise, replication by strand displacement seems optimal if it also exhibits extreme strand preference wherein (-) strands are always the template, favoring replicase production. Here we investigate whether such strand preference can evolve in a simple RNA replicator system with strand displacement.
RESULTS: We first studied a simple mathematical model of the replicator dynamics. Our results indicated that if the system is well-mixed, there is no selective force acting upon strand preference per se. Next, we studied an individual-based simulation model to investigate the evolution of strand preference under finite diffusion. Interestingly, the results showed that selective forces "emerge" because of finite diffusion. Strikingly, the direction of the strand preference that evolves [i.e. (+) or (-) strand excess] is a complex non-monotonic function of the diffusion intensity. The mechanism underlying this behavior is elucidated. Furthermore, a speciation-like phenomenon is observed under certain conditions: two extreme replication strategies, namely replicase producers and template producers, emerge and coexist among competing replicators.
CONCLUSION: Finite diffusion enables the evolution of strand preference, the direction of which is a non-monotonic function of the diffusion intensity. By identifying the conditions under which strand preference evolves, this study provides an insight into how a rudimentary transcription-like pattern might have emerged in an RNA-based replicator system.
REVIEWERS: This article was reviewed by Eugene V Koonin, Rob Kinght and István Scheuring (nominated by David H Ardell). For the full reviews, please go to the Reviewers' comments section.

References

  1. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18246-50 [PMID: 15604150]
  2. RNA. 2008 Mar;14(3):552-62 [PMID: 18230767]
  3. Ecol Lett. 2008 Mar;11(3):277-95 [PMID: 18070102]
  4. Proc Natl Acad Sci U S A. 1975 Jan;72(1):143-6 [PMID: 1054490]
  5. J Theor Biol. 2001 Sep 7;212(1):99-105 [PMID: 11527448]
  6. Bull Math Biol. 2000 Jul;62(4):759-74 [PMID: 10938631]
  7. J Theor Biol. 1997 Sep 7;188(1):11-20 [PMID: 9299306]
  8. Science. 2001 May 18;292(5520):1319-25 [PMID: 11358999]
  9. J Theor Biol. 2006 Mar 21;239(2):247-56 [PMID: 16243358]
  10. J Theor Biol. 1999 Aug 21;199(4):425-33 [PMID: 10441460]
  11. Biol Direct. 2008 Mar 27;3:11 [PMID: 18371199]
  12. Proc Natl Acad Sci U S A. 1991 Nov;88:10014-7 [PMID: 11538487]
  13. Cell Biochem Biophys. 2001;34(1):95-119 [PMID: 11394443]
  14. J Theor Biol. 1979 May 21;78(2):271-98 [PMID: 491716]
  15. Orig Life Evol Biosph. 2008 Jun;38(3):211-42 [PMID: 18344011]
  16. J Mol Evol. 2003;57 Suppl 1:S182-9 [PMID: 15008415]
  17. Microbiol Rev. 1988 Dec;52(4):452-84 [PMID: 3070320]
  18. J Theor Biol. 1989 May 9;138(1):55-8 [PMID: 2483243]
  19. Nature. 1999 Jul 22;400(6742):354-7 [PMID: 10432112]
  20. Bull Math Biol. 1998 Nov;60(6):1073-98 [PMID: 9866451]
  21. Nature. 1996 May 2;381(6577):59-61 [PMID: 8609988]
  22. J Mol Evol. 2007 Dec;65(6):668-86 [PMID: 17955153]
  23. Orig Life Evol Biosph. 2003 Oct;33(4-5):375-403 [PMID: 14604183]
  24. Biochemistry. 1985 Nov 5;24(23):6550-60 [PMID: 2417621]
  25. J Theor Biol. 1987 Oct 21;128(4):463-86 [PMID: 2451771]
  26. Orig Life Evol Biosph. 2006 Dec;36(5-6):493-9 [PMID: 17136428]
  27. Nature. 1996 May 2;381(6577):20-1 [PMID: 8609978]
  28. RNA. 2007 Jul;13(7):1017-26 [PMID: 17586759]
  29. Nature. 2002 Nov 21;420(6913):340-3 [PMID: 12447445]

MeSH Term

Evolution, Molecular
Mathematical Concepts
Models, Genetic
RNA, Double-Stranded
Stochastic Processes
Transcription, Genetic

Chemicals

RNA, Double-Stranded

Word Cloud

Created with Highcharts 10.0.0strandpreferenceRNAtemplatereplicasediffusioncanreplicationevolution+-producesnewdouble-strandedstrandsdisplacementextremereplicatorsystembecometwotranscriptionexhibitswhereinalwaysinvestigatesimplestudiedmodelresultsselectivefinitedirectionevolvesnon-monotonicfunctionintensityproducersreplicatorsBACKGROUND:simplestconceivableexampleevolvingsystemsmoleculesreplicateSincecomplementarytemplateseventuallyhenceunavailableThusproblemseparateconsideredmajorissueearlyself-replicatingOnebiologicallyplausiblewaycopydisplacepreexistingnewlysynthesizedcopyingprincipleinitiatedeitherAssumingonesayactsingle-strandedhoweverModernanti-senseLikewiseseemsoptimalalsofavoringproductionwhetherevolveRESULTS:firstmathematicaldynamicsindicatedwell-mixedforceactinguponperseNextindividual-basedsimulationInterestinglyshowedforces"emerge"Strikingly[ieexcess]complexmechanismunderlyingbehaviorelucidatedFurthermorespeciation-likephenomenonobservedcertainconditions:strategiesnamelyemergecoexistamongcompetingCONCLUSION:Finiteenablesidentifyingconditionsstudyprovidesinsightrudimentarytranscription-likepatternmightemergedRNA-basedREVIEWERS:articlereviewedEugeneVKooninRobKinghtIstvánScheuringnominatedDavidHArdellfullreviewspleasegoReviewers'commentssectionsimulateddisplacement:implicationsorigin

Similar Articles

Cited By