Fish and chips: functional genomics of social plasticity in an African cichlid fish.

Susan C P Renn, Nadia Aubin-Horth, Hans A Hofmann
Author Information
  1. Susan C P Renn: Harvard University, Bauer Center for Genomics Research, 7 Divinity Avenue, Cambridge, MA 02138, USA.

Abstract

Behavior and physiology are regulated by both environment and social context. A central goal in the study of the social control of behavior is to determine the underlying physiological, cellular and molecular mechanisms in the brain. The African cichlid fish Astatotilapia burtoni has long been used as a model system to study how social interactions regulate neural and behavioral plasticity. In this species, males are either socially dominant and reproductively active or subordinate and reproductively suppressed. This phenotypic difference is reversible. Using an integrative approach that combines quantitative behavioral measurements, functional genomics and bioinformatic analyses, we examine neural gene expression in dominant and subordinate males as well as in brooding females. We confirm the role of numerous candidate genes that are part of neuroendocrine pathways and show that specific co-regulated gene sets (modules), as well as specific functional gene ontology categories, are significantly associated with either dominance or reproductive state. Finally, even though the dominant and subordinate phenotypes are robustly defined, we find a surprisingly high degree of individual variation in the transcript levels of the very genes that are differentially regulated between these phenotypes. The results of the present study demonstrate the molecular complexity in the brain underlying social behavior, identify novel targets for future studies, validate many candidate genes and exploit individual variation in order to gain biological insights.

References

  1. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):423-5 [PMID: 11923002]
  2. Comp Biochem Physiol B Biochem Mol Biol. 2002 May;132(1):203-15 [PMID: 11997222]
  3. J Neurosci. 2005 Jun 15;25(24):5740-9 [PMID: 15958740]
  4. Bioessays. 2001 Dec;23(12):1100-11 [PMID: 11746229]
  5. Neuroscience. 2006 Aug 25;141(2):559-568 [PMID: 16725274]
  6. Science. 2005 Apr 29;308(5722):648-52 [PMID: 15860617]
  7. Behav Processes. 1984 Apr;9(2-3):181-90 [PMID: 24896515]
  8. Nat Genet. 2004 Oct;36(10):1090-8 [PMID: 15448693]
  9. J Neurosci Res. 2006 Apr;83(5):775-86 [PMID: 16498614]
  10. Gen Comp Endocrinol. 1995 Jul;99(1):22-7 [PMID: 7657153]
  11. Brain Behav Evol. 2007;70(4):239-46 [PMID: 17914255]
  12. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2204-9 [PMID: 15677717]
  13. Cell Mol Life Sci. 1999 May;55(5):707-34 [PMID: 10379359]
  14. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3334-7 [PMID: 1373497]
  15. Mol Cell Endocrinol. 2006 Jul 25;254-255:32-8 [PMID: 16781054]
  16. J Neurosci. 2000 Jun 15;20(12):4740-4 [PMID: 10844043]
  17. Horm Behav. 2007 Jan;51(1):164-70 [PMID: 17081541]
  18. BMC Evol Biol. 2005 Feb 21;5:17 [PMID: 15723698]
  19. Proc Biol Sci. 2005 Aug 22;272(1573):1655-62 [PMID: 16087419]
  20. Biol Reprod. 2004 Sep;71(3):909-18 [PMID: 15140799]
  21. Mol Cell Neurosci. 2003 Jul;23(3):473-94 [PMID: 12837630]
  22. J Neurosci. 1997 Aug 15;17(16):6463-9 [PMID: 9236253]
  23. Science. 2003 Oct 10;302(5643):296-9 [PMID: 14551438]
  24. Cell Mol Life Sci. 2006 Mar;63(6):709-22 [PMID: 16465451]
  25. Novartis Found Symp. 2002;244:169-84; discussion 184-6, 203-6, 253-7 [PMID: 11990790]
  26. Gen Comp Endocrinol. 2006 Jul;147(3):323-8 [PMID: 16563393]
  27. Science. 2002 Apr 26;296(5568):752-5 [PMID: 11923494]
  28. J Neurobiol. 2003 Jan;54(1):272-82 [PMID: 12486709]
  29. J Exp Biol. 2006 Jul;209(Pt 14):2660-77 [PMID: 16809457]
  30. Fish Physiol Biochem. 2005 Apr;31(2-3):117-22 [PMID: 20035444]
  31. Genome Biol. 2002;3(12):RESEARCH0071 [PMID: 12537560]
  32. Curr Opin Neurobiol. 2006 Jun;16(3):343-50 [PMID: 16697636]
  33. Int J Mol Med. 2007 Apr;19(4):639-47 [PMID: 17334639]
  34. Science. 1981 Oct 9;214(4517):202-4 [PMID: 7280692]
  35. Behav Genet. 1996 May;26(3):241-77 [PMID: 8754250]
  36. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7794-8 [PMID: 8356086]
  37. Anat Embryol (Berl). 2001 Aug;204(2):109-15 [PMID: 11556526]
  38. J Neurosci. 2003 May 15;23(10):4386-93 [PMID: 12764128]
  39. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14171-6 [PMID: 10570217]
  40. Mol Ecol. 2007 Jul;16(13):2613-6 [PMID: 17594433]
  41. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1423-7 [PMID: 8108425]
  42. Horm Behav. 2004 May;45(5):345-53 [PMID: 15109909]
  43. J Mol Neurosci. 2002 Feb-Apr;18(1-2):151-65 [PMID: 11931346]
  44. Gen Comp Endocrinol. 2005 May 15;142(1-2):3-19 [PMID: 15862543]
  45. Annu Rev Neurosci. 2002;25:507-36 [PMID: 12052919]
  46. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  47. Nat Rev Genet. 2005 Apr;6(4):257-70 [PMID: 15761469]
  48. Horm Behav. 1998 Aug;34(1):67-77 [PMID: 9735230]
  49. J Neuroendocrinol. 2004 Apr;16(4):325-32 [PMID: 15089970]
  50. Proc Biol Sci. 2008 Feb 22;275(1633):393-402 [PMID: 18055387]
  51. Biol Rev Camb Philos Soc. 2004 Nov;79(4):769-94 [PMID: 15682870]
  52. Regul Pept. 2005 Mar 15;126(1-2):21-6 [PMID: 15620409]
  53. Behav Brain Res. 2007 May 16;179(2):314-20 [PMID: 17374406]
  54. PLoS Biol. 2005 Nov;3(11):e363 [PMID: 16216088]
  55. Behav Brain Res. 2006 Jan 30;166(2):291-5 [PMID: 16143408]
  56. Proc Biol Sci. 2005 Nov 22;272(1579):2435-40 [PMID: 16243688]
  57. Curr Opin Pharmacol. 2005 Feb;5(1):26-33 [PMID: 15661622]
  58. Proc Biol Sci. 2006 Dec 22;273(1605):3085-92 [PMID: 17015351]
  59. Nat Genet. 2002 Dec;32 Suppl:490-5 [PMID: 12454643]
  60. BMC Genomics. 2004 Jul 06;5(1):42 [PMID: 15238158]
  61. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  62. Endocrinology. 2006 Nov;147(11):5119-25 [PMID: 16887916]
  63. Proc Biol Sci. 2008 Oct 22;275(1649):2393-402 [PMID: 18628117]
  64. Regul Pept. 1993 Jun 11;45(3):407-19 [PMID: 7688905]
  65. J Neuroendocrinol. 1999 Jan;11(1):19-25 [PMID: 9918225]
  66. Exp Gerontol. 1992;27(1):99-110 [PMID: 1499689]
  67. Am J Physiol. 1993 Feb;264(2 Pt 2):R355-61 [PMID: 7680542]
  68. Behav Brain Res. 2006 Jun 30;170(2):342-6 [PMID: 16580741]
  69. Bioinformatics. 2005 Aug 15;21(16):3448-9 [PMID: 15972284]
  70. Biochem Cell Biol. 2000;78(3):241-59 [PMID: 10949077]
  71. Cell Tissue Res. 2001 Nov;306(2):309-18 [PMID: 11702242]
  72. J Hered. 2005 May-Jun;96(3):261-78 [PMID: 15653555]
  73. Horm Behav. 1996 Sep;30(3):216-26 [PMID: 8918677]
  74. Nature. 1999 Dec 2;402(6761 Suppl):C47-52 [PMID: 10591225]
  75. J Neurobiol. 2003 Sep 5;56(3):209-21 [PMID: 12884261]
  76. J Exp Biol. 2002 Sep;205(Pt 17):2567-81 [PMID: 12151363]
  77. J Neurobiol. 1990 Dec;21(8):1180-8 [PMID: 2273399]
  78. Eur J Morphol. 1999 Apr;37(2-3):100-2 [PMID: 10342437]
  79. Curr Opin Microbiol. 2003 Apr;6(2):125-34 [PMID: 12732301]
  80. Physiol Genomics. 2006 Nov 27;27(3):328-36 [PMID: 16954407]
  81. Nat Rev Neurosci. 2008 Feb;9(2):123-35 [PMID: 18200027]
  82. Fish Physiol Biochem. 1993 Jul;11(1-6):219-32 [PMID: 24202479]
  83. Mol Ecol. 2007 Apr;16(7):1349-58 [PMID: 17391260]
  84. Brain Behav Evol. 2007;70(1):21-39 [PMID: 17389793]
  85. Mol Ecol. 2006 Apr;15(5):1197-211 [PMID: 16626448]
  86. J Biol Rhythms. 2001 Aug;16(4):365-80 [PMID: 11506381]
  87. Nature. 1993 Oct 7;365(6446):545-8 [PMID: 8413608]
  88. Nat Rev Genet. 2004 Apr;5(4):288-98 [PMID: 15131652]
  89. BMC Genomics. 2008 Feb 25;9:96 [PMID: 18298844]
  90. Horm Behav. 2004 Apr;45(4):225-34 [PMID: 15053938]
  91. Brain Res. 2006 Dec 18;1126(1):91-101 [PMID: 17045250]
  92. Front Neuroendocrinol. 2006 Jul;27(2):170-9 [PMID: 16376420]
  93. J Mammary Gland Biol Neoplasia. 2002 Jul;7(3):291-312 [PMID: 12751893]
  94. Brain Res Brain Res Rev. 2001 Jul;35(3):246-65 [PMID: 11423156]

Grants

  1. P50 GM068763/NIGMS NIH HHS
  2. GM068763/NIGMS NIH HHS

MeSH Term

Animals
Bayes Theorem
Behavior, Animal
Cichlids
Cluster Analysis
Dominance-Subordination
Female
Gene Expression Profiling
Genetic Variation
Genomics
Hierarchy, Social
Male
Oligonucleotide Array Sequence Analysis
Phenotype
Reproduction
Social Behavior

Word Cloud

Created with Highcharts 10.0.0socialstudydominantsubordinatefunctionalgenegenesregulatedbehaviorunderlyingmolecularbrainAfricancichlidfishneuralbehavioralplasticitymaleseitherreproductivelygenomicswellcandidatespecificphenotypesindividualvariationBehaviorphysiologyenvironmentcontextcentralgoalcontroldeterminephysiologicalcellularmechanismsAstatotilapiaburtonilongusedmodelsysteminteractionsregulatespeciessociallyactivesuppressedphenotypicdifferencereversibleUsingintegrativeapproachcombinesquantitativemeasurementsbioinformaticanalysesexamineexpressionbroodingfemalesconfirmrolenumerouspartneuroendocrinepathwaysshowco-regulatedsetsmodulesontologycategoriessignificantlyassociateddominancereproductivestateFinallyeventhoughrobustlydefinedfindsurprisinglyhighdegreetranscriptlevelsdifferentiallyresultspresentdemonstratecomplexityidentifynoveltargetsfuturestudiesvalidatemanyexploitordergainbiologicalinsightsFishchips:

Similar Articles

Cited By (73)