Cloning of somatolactin alpha, beta forms and the somatolactin receptor in Atlantic salmon: seasonal expression profile in pituitary and ovary of maturing female broodstock.

Susana Benedet, Björn Thrandur Björnsson, Geir Lasse Taranger, Eva Andersson
Author Information
  1. Susana Benedet: Department of Zoology/Zoophysiology, University of Gothenburg, Gothenburg, Sweden. susana.benedet@zool.gu.se

Abstract

BACKGROUND: Somatolactin (Sl) is a fish specific adenohypophyseal peptide hormone related to growth hormone (Gh). Some species, including salmonids, possess two forms: Sl alpha and Sl beta. The Somatolactin receptor (slr) is closely related to the growth hormone receptor (ghr). Sl has been ascribed many physiological functions, including a role in sexual maturation. In order to clarify the role of Sl in the sexual maturation of female Atlantic salmon (Salmo salar), the full length cDNAs of slr, Sl alpha and Sl beta were cloned and their expression was studied throughout a seasonal reproductive cycle using real-time quantitative PCR (RTqPCR).
METHODS: Atlantic salmon Sl alpha, Sl beta and slr cDNAs were cloned using a PCR approach. Gene expression of Sl alpha, Sl beta and slr was studied using RTqPCR over a 17 month period encompassing pre-vitellogenesis, vitellogenesis, ovulation and post ovulation in salmon females. Histological examination of ovarian samples allowed for the classification according to the degree of follicle maturation into oil drop, primary, secondary or tertiary yolk stage.
RESULTS: The mature peptide sequences of Sl alpha, Sl beta and slr are highly similar to previously cloned salmonid forms and contained the typical motifs. Phylogenetic analysis of Atlantic salmon Sl alpha and Sl beta shows that these peptides group into the two Sl clades present in some fish species. The Atlantic salmon slr grouped with salmonid slr amongst so-called type I ghr. An increase in pituitary Sl alpha and Sl beta transcripts before and during spawning, with a decrease post-ovulation, and a constant expression level of ovarian slr were observed. There was also a transient increase in Sl alpha and Sl beta in May prior to transfer from seawater to fresh water and ensuing fasting.
CONCLUSION: The up-regulation of Sl alpha and Sl beta during vitellogenesis and spawning, with a subsequent decrease post-ovulation, supports a role for Sl during gonadal growth and spawning. Sl could also be involved in calcium/phosphate mobilization associated with vitellogenesis or have a role in energy homeostasis associated with lipolysis during fasting. The up-regulation of both Sl alpha and Sl beta prior to fasting and freshwater transfer, suggests a role for Sl linked to reproduction that may be independent of the maturation induced fasting.

References

  1. Fish Physiol Biochem. 1993 Jul;11(1-6):175-82 [PMID: 24202474]
  2. Biochem Biophys Res Commun. 1997 Mar 17;232(2):282-7 [PMID: 9125164]
  3. J Endocrinol. 1995 Jul;146(1):113-9 [PMID: 7561607]
  4. Gen Comp Endocrinol. 2002 Sep;128(2):102-11 [PMID: 12392683]
  5. Gen Comp Endocrinol. 2006 Jan 15;145(2):182-7 [PMID: 16259984]
  6. Gen Comp Endocrinol. 2005 May 15;142(1-2):193-203 [PMID: 15862563]
  7. Gen Comp Endocrinol. 2002 Aug;128(1):36-43 [PMID: 12270786]
  8. J Exp Biol. 1996;199(Pt 5):1043-51 [PMID: 9318855]
  9. Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R956-60 [PMID: 17537843]
  10. Biol Reprod. 2001 Jun;64(6):1633-43 [PMID: 11369589]
  11. J Endocrinol. 2004 Sep;182(3):509-18 [PMID: 15350192]
  12. J Endocrinol. 1998 Mar;156(3):441-7 [PMID: 9582500]
  13. J Mol Endocrinol. 1999 Oct;23(2):189-98 [PMID: 10514556]
  14. Gen Comp Endocrinol. 1989 Aug;75(2):316-26 [PMID: 2806878]
  15. Fish Physiol Biochem. 1994 Jun;13(2):141-51 [PMID: 24202313]
  16. J Exp Zool. 2000 Jun 15;287(1):62-73 [PMID: 10861551]
  17. Fish Physiol Biochem. 1995 Apr;14(2):93-101 [PMID: 24197357]
  18. Comp Biochem Physiol A Mol Integr Physiol. 2003 Nov;136(3):641-53 [PMID: 14613792]
  19. J Exp Biol. 2006 Sep;209(Pt 18):3550-7 [PMID: 16943495]
  20. Dev Genes Evol. 2006 Mar;216(3):152-7 [PMID: 16344968]
  21. Gen Comp Endocrinol. 1997 Jan;105(1):71-8 [PMID: 9000469]
  22. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10661-6 [PMID: 15249680]
  23. Eur J Biochem. 1999 Apr;261(2):555-62 [PMID: 10215869]
  24. J Mol Evol. 2007 Oct;65(4):359-72 [PMID: 17917757]
  25. Genetics. 2005 Dec;171(4):1875-83 [PMID: 16143602]
  26. Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R679-96 [PMID: 17023665]
  27. Comp Biochem Physiol B Biochem Mol Biol. 2005 Apr;140(4):615-28 [PMID: 15763517]
  28. Am J Physiol. 1995 Mar;268(3 Pt 2):R577-82 [PMID: 7900898]
  29. Gen Comp Endocrinol. 1993 Oct;92(1):31-40 [PMID: 8262355]
  30. Comp Biochem Physiol A Mol Integr Physiol. 2004 Aug;138(4):533-42 [PMID: 15369843]
  31. Biol Reprod. 2006 Jul;75(1):34-44 [PMID: 16554413]
  32. Biol Rev Camb Philos Soc. 2001 Feb;76(1):1-25 [PMID: 11325050]
  33. Gen Comp Endocrinol. 1994 Jan;93(1):28-35 [PMID: 8138116]
  34. J Endocrinol. 1992 Jun;133(3):393-403 [PMID: 1613440]
  35. Gen Comp Endocrinol. 1991 Sep;83(3):366-74 [PMID: 1936917]
  36. Gen Comp Endocrinol. 1992 Jul;87(1):1-5 [PMID: 1624088]
  37. Gen Comp Endocrinol. 1993 Sep;91(3):298-306 [PMID: 8224773]
  38. Endocrinology. 2005 May;146(5):2354-61 [PMID: 15718271]
  39. Gen Comp Endocrinol. 2004 Oct;139(1):61-71 [PMID: 15474537]
  40. Biochemistry. 1991 Feb 12;30(6):1509-15 [PMID: 1993170]
  41. Mar Biotechnol (NY). 2003 Jan-Feb;5(1):92-101 [PMID: 12925923]
  42. Gen Comp Endocrinol. 1995 Sep;99(3):275-88 [PMID: 8536939]
  43. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4330-4 [PMID: 2349240]
  44. J Mol Endocrinol. 2006 Feb;36(1):23-40 [PMID: 16461924]
  45. J Exp Zool A Comp Exp Biol. 2006 May 1;305(5):410-9 [PMID: 16489555]
  46. Gen Comp Endocrinol. 2004 Dec;139(3):266-77 [PMID: 15560873]
  47. Endocrinology. 2003 Mar;144(3):850-7 [PMID: 12586761]
  48. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Dec;130(4):435-45 [PMID: 11738631]
  49. Gen Comp Endocrinol. 1999 May;114(2):181-90 [PMID: 10208767]
  50. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  51. Gen Comp Endocrinol. 2006 Nov;149(2):159-65 [PMID: 16839552]
  52. Gen Comp Endocrinol. 1997 Feb;105(2):194-209 [PMID: 9038252]
  53. J Endocrinol. 1993 Sep;138(3):509-15 [PMID: 8277224]
  54. Gen Comp Endocrinol. 1997 May;106(2):271-80 [PMID: 9169123]

MeSH Term

Amino Acid Sequence
Animals
Base Sequence
Cloning, Molecular
Female
Fish Proteins
Glycoproteins
Molecular Sequence Data
Ovary
Phylogeny
Pituitary Gland
Pituitary Hormones
Receptors, Pituitary Hormone
Salmo salar
Seasons
Sexual Maturation
Tissue Distribution
Up-Regulation
Vitellogenesis

Chemicals

Fish Proteins
Glycoproteins
Pituitary Hormones
Receptors, Pituitary Hormone
somatolactin protein, fish

Word Cloud

Created with Highcharts 10.0.0SlalphabetaslrroleAtlanticsalmonmaturationexpressionfastinghormonegrowthsomatolactinreceptorclonedusingvitellogenesisspawningfishpeptiderelatedspeciesincludingtwoghrsexualfemalecDNAsstudiedseasonalPCRRTqPCRovulationovariansalmonidformsincreasepituitarydecreasepost-ovulationalsopriortransferup-regulationassociatedBACKGROUND:SomatolactinspecificadenohypophysealGhsalmonidspossessforms:closelyascribedmanyphysiologicalfunctionsorderclarifySalmosalarfulllengththroughoutreproductivecyclereal-timequantitativeMETHODS:approachGeneSL17monthperiodencompassingpre-vitellogenesispostfemalesHistologicalexaminationsamplesallowedclassificationaccordingdegreefollicleoildropprimarysecondarytertiaryyolkstageRESULTS:maturesequenceshighlysimilarpreviouslycontainedtypicalmotifsPhylogeneticanalysisshowspeptidesgroupcladespresentgroupedamongstso-calledtypetranscriptsconstantlevelobservedtransientMayseawaterfreshwaterensuingCONCLUSION:subsequentsupportsgonadalinvolvedcalcium/phosphatemobilizationenergyhomeostasislipolysisfreshwatersuggestslinkedreproductionmayindependentinducedCloningsalmon:profileovarymaturingbroodstock

Similar Articles

Cited By (17)