Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution.

Balázs Könnyu, Tamás Czárán, Eörs Szathmáry
Author Information
  1. Balázs Könnyu: Institute of Biology, Eötvös University, Budapest, Hungary. konnyu@caesar.elte.hu

Abstract

BACKGROUND: The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell.
RESULTS: We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase.
CONCLUSION: Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production.

References

  1. J Theor Biol. 1987 Oct 21;128(4):463-86 [PMID: 2451771]
  2. Orig Life Evol Biosph. 2003 Oct;33(4-5):319-55 [PMID: 14604181]
  3. Nature. 1979 Aug 9;280(5722):445-6 [PMID: 460422]
  4. Tetrahedron. 1984;40(7):1093-120 [PMID: 11541961]
  5. Science. 2000 Aug 25;289(5483):1307-8 [PMID: 10979855]
  6. Nature. 2002 Jul 11;418(6894):214-21 [PMID: 12110897]
  7. Nature. 1996 May 2;381(6577):59-61 [PMID: 8609988]
  8. Cell. 1996 Jun 14;85(6):793-8 [PMID: 8681375]
  9. Biol Direct. 2008;3:11 [PMID: 18371199]
  10. Nature. 2005 Feb 3;433(7025):469-70 [PMID: 15690023]
  11. Nature. 2002 Nov 21;420(6913):340-3 [PMID: 12447445]
  12. Nature. 2001 Jan 18;409(6818):387-90 [PMID: 11201752]
  13. Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):119-45 [PMID: 11296516]
  14. J Mol Evol. 1988;27(4):283-90 [PMID: 2464698]
  15. Bull Math Biol. 2000 Nov;62(6):1061-86 [PMID: 11127514]
  16. Angew Chem Int Ed Engl. 2005 Oct 21;44(41):6750-5 [PMID: 16187397]
  17. Q Rev Biol. 2006 Jun;81(2):105-25 [PMID: 16776061]
  18. Prog Biophys Mol Biol. 1992;58(2):85-201 [PMID: 1509092]
  19. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12503-7 [PMID: 11058157]
  20. RNA. 2007 Nov;13(11):2012-9 [PMID: 17878321]
  21. Sci Am. 1981 Apr;244(4):88-92, 96, et passim [PMID: 6164094]
  22. J Mol Evol. 1978 Oct 6;11(4):293-311 [PMID: 31491]
  23. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  24. Microbiol Rev. 1988 Dec;52(4):452-84 [PMID: 3070320]
  25. Naturwissenschaften. 1971 Oct;58(10):465-523 [PMID: 4942363]
  26. J Theor Biol. 1992 Nov 7;159(1):99-109 [PMID: 1291813]
  27. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5487-90 [PMID: 11331767]

MeSH Term

Computer Simulation
Evolution, Chemical
Evolution, Molecular
Metabolism
Models, Biological
Mutation
Origin of Life
RNA, Catalytic
RNA-Dependent RNA Polymerase

Chemicals

RNA, Catalytic
RNA-Dependent RNA Polymerase

Word Cloud

Created with Highcharts 10.0.0metabolicsystemprebioticevolutionsurface-boundreplicatorreplicaseevolutionarychangesfirstreactionsreplicatorsamongBACKGROUND:remarkablepotentialrecentformslifereliablypassinggeneticinformationmanygenerationsnowdependscoordinatedactionthousandsspecializedbiochemical"machines"enzymesobviouslyabsenttimesThusquestioncomplicatedlikelivingcellassembledEarthseemspuzzlingseekingscientificexplanationonesearchstep-by-stepchemistryemergenceproto-cellRESULTS:trysketchplausiblescenariostepsexploringecologicalfeasibilitymineralfacilitatesprimitivemetabolismMetabolismhypotheticalnetworksimplechemicalproducingmonomerstemplate-copyingRNA-liketurncatalyseUsingstochasticcellularautomataSCAsimulationsshowviabledespiteinternalcompetitiongenesalsomaintainssetmild"parasitic"sequencesoccasionallyevolvefunctionsCONCLUSION:ReplicaseactivityshownincreaseevenexpenseslowingreplicationevolvingribozymedueindirectmutualisticbenefitsdiffuseformgroupselectionneighbouringsuggestpossiblepathsleadingincreasedefficiencyimprovedfunctionalitymembraneproductionPrebioticsystem:parasitessourceadaptive

Similar Articles

Cited By