A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints.

Xiajun Li, Mitsuteru Ito, Fen Zhou, Neil Youngson, Xiaopan Zuo, Philip Leder, Anne C Ferguson-Smith
Author Information
  1. Xiajun Li: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. xiajun.li@mssm.edu

Abstract

The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, whereas eliminating both the maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are reacquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the postfertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.

References

  1. Genes Dev. 2000 Aug 15;14(16):1997-2002 [PMID: 10950864]
  2. Nat Genet. 2008 Aug;40(8):949-51 [PMID: 18622393]
  3. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1422-6 [PMID: 11171966]
  4. Genes Dev. 2001 Feb 15;15(4):428-43 [PMID: 11230151]
  5. Nat Rev Genet. 2001 Jan;2(1):21-32 [PMID: 11253064]
  6. Nat Rev Genet. 2000 Dec;1(3):171-81 [PMID: 11252746]
  7. Science. 2001 Jul 6;293(5527):95-7 [PMID: 11441181]
  8. Curr Opin Genet Dev. 2001 Aug;11(4):393-404 [PMID: 11448625]
  9. Science. 2001 Aug 10;293(5532):1086-9 [PMID: 11498578]
  10. Science. 2001 Aug 10;293(5532):1089-93 [PMID: 11498579]
  11. Science. 2001 Dec 21;294(5551):2536-9 [PMID: 11719692]
  12. Hum Mol Genet. 2002 Jan 1;11(1):77-86 [PMID: 11773001]
  13. Mol Cell Endocrinol. 2002 Jan 25;186(2):149-53 [PMID: 11900888]
  14. Genomics. 2002 Apr;79(4):530-8 [PMID: 11944985]
  15. Genes Dev. 2002 Apr 15;16(8):919-32 [PMID: 11959841]
  16. Mol Biol Evol. 2002 Dec;19(12):2118-30 [PMID: 12446804]
  17. Hum Mol Genet. 2003 May 1;12(9):1005-19 [PMID: 12700169]
  18. Genes Dev. 2003 Aug 1;17(15):1855-69 [PMID: 12869583]
  19. Nat Genet. 2003 Sep;35(1):97-102 [PMID: 12937418]
  20. Nat Genet. 2003 Sep;35(1):11-2 [PMID: 12947402]
  21. Annu Rev Cell Dev Biol. 2003;19:237-59 [PMID: 14570570]
  22. Genes Dev. 2003 Nov 1;17(21):2664-74 [PMID: 14563677]
  23. Curr Biol. 2003 Dec 2;13(23):2110-7 [PMID: 14654002]
  24. Dev Biol. 2004 Jan 15;265(2):491-501 [PMID: 14732407]
  25. Hum Mol Genet. 2004 Apr 1;13(7):751-62 [PMID: 14962980]
  26. Nature. 2004 Jun 24;429(6994):900-3 [PMID: 15215868]
  27. Nature. 1984 Apr 5-11;308(5959):548-50 [PMID: 6709062]
  28. Cell. 1984 May;37(1):179-83 [PMID: 6722870]
  29. Cell. 1987 Nov 20;51(4):601-11 [PMID: 3677169]
  30. Dev Suppl. 1991;1:1-10 [PMID: 1742496]
  31. Nature. 1993 Nov 25;366(6453):362-5 [PMID: 8247133]
  32. J Biol Chem. 1994 Mar 4;269(9):6900-7 [PMID: 8120052]
  33. Biotechniques. 1994 Aug;17(2):257, 260, 262 [PMID: 7980919]
  34. Genes Dev. 1996 Aug 15;10(16):2067-78 [PMID: 8769649]
  35. Curr Opin Genet Dev. 2000 Oct;10(5):550-4 [PMID: 10980434]
  36. Genetics. 2000 Jul;155(3):1127-37 [PMID: 10880475]
  37. Development. 1996 Oct;122(10):3195-205 [PMID: 8898232]
  38. Mol Cell Biol. 1997 Aug;17(8):4322-9 [PMID: 9234689]
  39. Curr Opin Genet Dev. 1998 Aug;8(4):472-80 [PMID: 9729725]
  40. Genes Dev. 1998 Nov 1;12(21):3382-93 [PMID: 9808625]
  41. Cell. 1999 Jan 22;96(2):185-93 [PMID: 9988214]
  42. Nat Genet. 2004 Dec;36(12):1291-5 [PMID: 15516931]
  43. Nat Genet. 2004 Dec;36(12):1296-300 [PMID: 15516932]
  44. Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58 [PMID: 15809273]
  45. Biochem Biophys Res Commun. 2005 May 27;331(1):23-30 [PMID: 15845352]
  46. Cytogenet Genome Res. 2006;113(1-4):81-9 [PMID: 16575166]
  47. Cytogenet Genome Res. 2006;113(1-4):130-7 [PMID: 16575172]
  48. Genes Cells. 2006 Apr;11(4):353-61 [PMID: 16611239]
  49. Nat Cell Biol. 2007 Jan;9(1):64-71 [PMID: 17143267]
  50. Trends Genet. 2007 Jun;23(6):284-92 [PMID: 17445943]
  51. Curr Opin Cell Biol. 2007 Jun;19(3):281-9 [PMID: 17467259]
  52. Nature. 2007 Aug 9;448(7154):714-7 [PMID: 17687327]
  53. Cell. 2007 Sep 7;130(5):958 [PMID: 17803916]
  54. Nat Biotechnol. 2007 Sep;25(9):1045-50 [PMID: 17704765]
  55. BMC Cell Biol. 2007;8:37 [PMID: 17725840]
  56. J Biol Chem. 2007 Nov 23;282(47):34535-41 [PMID: 17893143]
  57. Genes Dev. 2008 Jun 15;22(12):1607-16 [PMID: 18559477]

Grants

  1. G0701196/Medical Research Council
  2. P01 HD047675-01A17046/NICHD NIH HHS
  3. /Biotechnology and Biological Sciences Research Council

MeSH Term

Amino Acid Sequence
Animals
Blastocyst
DNA Methylation
Embryo, Mammalian
Female
Genomic Imprinting
Heterozygote
Homozygote
Immunohistochemistry
Male
Mice
Mice, Knockout
Molecular Sequence Data
Mutation
Nuclear Proteins
Oocytes
Pregnancy
Repressor Proteins
Sequence Homology, Amino Acid
Zinc Fingers
Zygote

Chemicals

Nuclear Proteins
Repressor Proteins
Zfp-57 protein, mouse

Word Cloud

Created with Highcharts 10.0.0Zfp57imprintsmethylationmaternalgenomiczygoticlethalityimprintedmouseembryosresultsSnrpnregionpaternalmaternal-zygoticmechanismsresponsiblemaintainingunderstoodgeneratedknockoutlocusencodingKRABzincfingerproteinLossjustfunctioncausespartialneonatalwhereaseliminatingfunctionshighlypenetrantembryonicoocytesabsencefailureestablishIntriguinglyreacquiredspecificallymaternallyderivedpresentsuggestsmayDNAmethylation-independentmemoryalsorequiredpostfertilizationmaintenancemultipledomainseffectsimprintingconsistentmutantseffectgenemaintains

Similar Articles

Cited By (307)