Fine discrimination training alters the causal contribution of macaque area MT to depth perception.

Syed A Chowdhury, Gregory C DeAngelis
Author Information
  1. Syed A Chowdhury: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA.

Abstract

When a new perceptual task is learned, plasticity occurs in the brain to mediate improvements in performance with training. How do these changes affect the neural substrates of previously learned tasks? We addressed this question by examining the effect of fine discrimination training on the causal contribution of area MT to coarse depth discrimination. When monkeys are trained to discriminate between two coarse absolute disparities (near versus far) embedded in noise, reversible inactivation of area MT devastates performance. In contrast, after animals are trained to discriminate fine differences in relative disparity, MT inactivation no longer impairs coarse depth discrimination. This effect does not result from changes in the disparity tuning of MT neurons, suggesting plasticity in the flow of disparity signals to decision circuitry. These findings show that the contribution of particular brain area to task performance can change dramatically as a result of learning new tasks.

References

  1. Vision Res. 1999 Sep;39(19):3197-221 [PMID: 10615491]
  2. Vis Neurosci. 1993 Jul-Aug;10(4):717-46 [PMID: 8338809]
  3. J Neurophysiol. 2000 May;83(5):3140-6 [PMID: 10805708]
  4. Neuron. 2000 Aug;27(2):385-97 [PMID: 10985357]
  5. Annu Rev Neurosci. 2001;24:203-38 [PMID: 11283310]
  6. Nat Neurosci. 2001 May;4(5):519-25 [PMID: 11319561]
  7. J Neurosci Methods. 2001 May 30;107(1-2):81-5 [PMID: 11389944]
  8. Nature. 2001 Aug 2;412(6846):549-53 [PMID: 11484056]
  9. Neuron. 2001 Sep 13;31(5):681-97 [PMID: 11567610]
  10. J Neurophysiol. 2001 Nov;86(5):2195-203 [PMID: 11698511]
  11. J Neurosci. 2001 Dec 1;21(23):9419-29 [PMID: 11717375]
  12. J Neurophysiol. 2002 Jan;87(1):191-208 [PMID: 11784742]
  13. J Neurophysiol. 2002 Apr;87(4):1867-88 [PMID: 11929908]
  14. Neurobiol Learn Mem. 2002 Jul;78(1):100-24 [PMID: 12071670]
  15. J Neurosci Methods. 2002 Jul 30;118(1):51-7 [PMID: 12191757]
  16. J Neurosci. 2002 Nov 1;22(21):9475-89 [PMID: 12417672]
  17. J Neurophysiol. 2003 Feb;89(2):1094-111 [PMID: 12574483]
  18. J Neurosci. 2003 Apr 15;23(8):3515-30 [PMID: 12716961]
  19. J Neurosci. 2003 Aug 6;23(18):7117-28 [PMID: 12904472]
  20. J Neurosci. 2004 Feb 18;24(7):1617-26 [PMID: 14973244]
  21. Neuron. 2004 Apr 22;42(2):297-310 [PMID: 15091344]
  22. J Neurophysiol. 2004 Jun;91(6):2670-84 [PMID: 14960558]
  23. Curr Opin Neurobiol. 2004 Aug;14(4):513-8 [PMID: 15321073]
  24. J Neurochem. 1978 Jun;30(6):1377-82 [PMID: 670980]
  25. J Neurochem. 1979 Jan;32(1):249-52 [PMID: 759579]
  26. Exp Brain Res. 1979 Aug 1;36(3):585-97 [PMID: 477784]
  27. J Neurophysiol. 1995 Jan;73(1):280-97 [PMID: 7714572]
  28. Annu Rev Neurosci. 1995;18:129-58 [PMID: 7605058]
  29. Nature. 1995 Nov 2;378(6552):71-5 [PMID: 7477291]
  30. Annu Rev Neurosci. 1998;21:149-86 [PMID: 9530495]
  31. Nature. 1998 Aug 13;394(6694):677-80 [PMID: 9716130]
  32. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13988-93 [PMID: 9811913]
  33. J Neurosci. 1999 Feb 15;19(4):1398-415 [PMID: 9952417]
  34. J Neurosci Methods. 1999 Jan;86(2):145-59 [PMID: 10065983]
  35. Exp Brain Res. 1993;94(3):429-43 [PMID: 8359257]
  36. Curr Opin Neurobiol. 1993 Aug;3(4):570-7 [PMID: 8219724]
  37. Curr Opin Neurobiol. 2005 Apr;15(2):154-60 [PMID: 15831396]
  38. Annu Rev Neurosci. 2005;28:157-89 [PMID: 16022593]
  39. Novartis Found Symp. 2006;270:92-101; discussion 101-13 [PMID: 16649710]
  40. J Neurosci. 2006 Jun 14;26(24):6589-602 [PMID: 16775147]
  41. J Neurosci. 2006 Jun 21;26(25):6791-802 [PMID: 16793886]
  42. Annu Rev Neurosci. 2007;30:535-74 [PMID: 17600525]
  43. J Neurophysiol. 2007 Jul;98(1):241-52 [PMID: 17507498]
  44. Nat Neurosci. 2008 Apr;11(4):505-13 [PMID: 18327253]
  45. J Neurosci Methods. 2008 Jun 15;171(1):30-8 [PMID: 18377997]
  46. J Neurosci. 2000 May 1;20(9):3387-400 [PMID: 10777801]
  47. J Neurophysiol. 1985 Jan;53(1):266-91 [PMID: 2983037]
  48. J Neurophysiol. 1987 Apr;57(4):889-920 [PMID: 3585463]
  49. J Neurosci. 1988 Dec;8(12):4531-50 [PMID: 3199191]
  50. J Neurophysiol. 1990 Jan;63(1):82-104 [PMID: 2299388]
  51. J Neurophysiol. 1992 May;67(5):1031-56 [PMID: 1597696]
  52. J Neurosci. 1992 Jun;12(6):2331-55 [PMID: 1607944]
  53. J Neurosci. 1992 Dec;12(12):4745-65 [PMID: 1464765]
  54. J Neurosci. 1993 Jan;13(1):87-103 [PMID: 8423485]
  55. J Neurophysiol. 1993 Mar;69(3):902-14 [PMID: 8385201]

Grants

  1. R01 EY013644/NEI NIH HHS
  2. R01 EY013644-08/NEI NIH HHS
  3. EY013644/NEI NIH HHS

MeSH Term

Animals
Decision Making
Depth Perception
Discrimination Learning
GABA Agonists
Learning
Macaca mulatta
Male
Muscimol
Neuronal Plasticity
Neurons
Neuropsychological Tests
Photic Stimulation
Temporal Lobe
Visual Cortex
Visual Pathways

Chemicals

GABA Agonists
Muscimol

Word Cloud

Created with Highcharts 10.0.0MTdiscriminationareaperformancetrainingcontributioncoarsedepthdisparitynewtasklearnedplasticitybrainchangeseffectfinecausaltraineddiscriminateinactivationresultperceptualoccursmediateimprovementsaffectneuralsubstratespreviouslytasks?addressedquestionexaminingmonkeystwoabsolutedisparitiesnearversusfarembeddednoisereversibledevastatescontrastanimalsdifferencesrelativelongerimpairstuningneuronssuggestingflowsignalsdecisioncircuitryfindingsshowparticularcanchangedramaticallylearningtasksFinealtersmacaqueperception

Similar Articles

Cited By