Alpha-adrenergic and neuropeptide Y Y1 receptor control of collateral circuit conductance: influence of exercise training.

Jessica C Taylor, H T Yang, M Harold Laughlin, Ronald L Terjung
Author Information
  1. Jessica C Taylor: Department of Biomedical Sciences, E102 Vet. Medical Bldg, University of Missouri, Columbia, MO 65211, USA.

Abstract

This study evaluated the role of alpha-adrenergic receptor- and neuropeptide Y (NPY) Y1 receptor-mediated vasoconstriction in the collateral circuit of the hind limb. Animals were evaluated either the same day (Acute) or 3 weeks following occlusion of the femoral artery; the 3-week animals were in turn limited to cage activity (Sed) or given daily exercise (Trained). Collateral-dependent blood flows (BFs) were measured during exercise with microspheres before and after alpha-receptor inhibition (phentolamine) and then NPY Y1 receptor inhibition (BIBP 3226) at the same running speed. Blood pressures (BPs) were measured above (caudal artery) and below (distal femoral artery) the collateral circuit. Arterial BPs were reduced by alpha-inhibition (50-60 mmHg) to approximately 75 mmHg, but not further by NPY Y1 receptor inhibition. Effective experimental sympatholysis was verified by 50-100% increases (P < 0.001) in conductance of active muscles not affected by femoral occlusion with receptor inhibition. In the absence of receptor inhibition, vascular conductance of the collateral circuit was minimal in the Acute group (0.13 +/- 0.02), increased over time in the Sed group (0.41 +/- 0.03; P < 0.001), and increased further in the Trained group (0.53 +/- 0.03; P < 0.02). Combined receptor inhibition increased collateral circuit conductances (P < 0.005), most in the Acute group (116 +/- 37%; P < 0.02), as compared to the Sed (41 +/- 6.6%; P < 0.001) and Trained (31 +/- 5.6%; P < 0.001) groups. Thus, while the sympathetic influence of the collateral circuit remained in the Sed and Trained animals, it became less influential with time post-occlusion. Collateral conductances were collectively greater (P < 0.01) in the Trained as compared to Sed group, irrespective of the presence or absence of receptor inhibition. Conductances of the active ischaemic calf muscle, with combined receptor inhibition, were suboptimal in the Acute group, but increased in Sed and Trained animals to exceptionally high values (e.g. red fibre section of the gastrocnemius: approximately 7 ml min(-1) (100 g)(-1) mmHg(-1)). Thus, occlusion of the femoral artery promulgated vascular adaptations, even in vessels that are not part of the collateral circuit. The presence of active sympathetic control of the collateral circuit, even with exercise training, raises the potential for reductions in collateral BF below that possible by the structure of the collateral circuit. However, even with release of this sympathetic vasoconstriction, conductance of the collateral circuit was significantly greater with exercise training, probably due to the network of structurally larger collateral vessels.

References

  1. Eur J Vasc Surg. 1994 Mar;8(2):129-37 [PMID: 8181604]
  2. J Pathol. 2000 Feb;190(3):338-42 [PMID: 10685067]
  3. Arterioscler Thromb Vasc Biol. 1996 Oct;16(10):1256-62 [PMID: 8857922]
  4. Regul Pept. 1987 Dec;19(5-6):313-24 [PMID: 3438489]
  5. Circulation. 1967 Jul;36(1):23-9 [PMID: 6027212]
  6. Regul Pept. 1993 Dec 10;49(2):133-44 [PMID: 7907802]
  7. J Gerontol A Biol Sci Med Sci. 2000 Oct;55(10):M570-7 [PMID: 11034229]
  8. Eur J Vasc Endovasc Surg. 2007 Jan;33(1):20-5 [PMID: 16934498]
  9. Circulation. 1969 Mar;39(3):353-9 [PMID: 4885945]
  10. Clin Sci (Lond). 1999 Feb;96(2):155-63 [PMID: 9918895]
  11. Am J Physiol Heart Circ Physiol. 2001 Dec;281(6):H2528-38 [PMID: 11709420]
  12. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H1966-73 [PMID: 10843895]
  13. J Appl Physiol (1985). 1998 Dec;85(6):2277-83 [PMID: 9843553]
  14. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1097-104 [PMID: 11179052]
  15. Circ Res. 1991 Jul;69(1):165-73 [PMID: 1647276]
  16. Cardiovasc Res. 2001 Jan;49(1):218-25 [PMID: 11121814]
  17. J Clin Invest. 2003 Jun;111(12):1853-62 [PMID: 12813021]
  18. J Physiol. 1989 Apr;411:63-70 [PMID: 2614738]
  19. Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H301-10 [PMID: 11748075]
  20. Am J Physiol. 1995 Jan;268(1 Pt 2):H125-37 [PMID: 7840257]
  21. Am J Physiol. 1993 Nov;265(5 Pt 2):H1501-9 [PMID: 8238561]
  22. Ann Intern Med. 2006 Jan 3;144(1):10-20 [PMID: 16389250]
  23. Microvasc Res. 1992 Mar;43(2):192-204 [PMID: 1584061]
  24. J Physiol. 2008 Mar 15;586(6):1649-67 [PMID: 18218679]
  25. Am J Physiol. 1982 Aug;243(2):H296-306 [PMID: 7114239]
  26. Biochem Biophys Res Commun. 1985 Nov 27;133(1):30-6 [PMID: 3840999]
  27. J Physiol. 1985 Sep;366:233-49 [PMID: 4057091]
  28. Am J Physiol. 1990 Mar;258(3 Pt 2):H759-65 [PMID: 2316692]
  29. J Appl Physiol (1985). 1993 Jul;75(1):452-7 [PMID: 8397181]
  30. J Appl Physiol (1985). 1990 Oct;69(4):1353-9 [PMID: 2262453]
  31. Circulation. 2006 Oct 24;114(17):1811-20 [PMID: 17043168]
  32. Am J Physiol. 1995 Mar;268(3 Pt 2):H1174-80 [PMID: 7900871]
  33. Ann Surg. 1989 Mar;209(3):346-55 [PMID: 2647051]
  34. Vasc Med. 2007 Nov;12(4):351-8 [PMID: 18048473]
  35. Exerc Sport Sci Rev. 1991;19:313-49 [PMID: 1936089]
  36. J Appl Physiol (1985). 1991 Nov;71(5):1822-9 [PMID: 1761479]
  37. Am J Physiol. 1983 Aug;245(2):H265-75 [PMID: 6881361]
  38. Am J Physiol. 1989 Dec;257(6 Pt 2):H1958-65 [PMID: 2603980]
  39. J Appl Physiol (1985). 1997 Nov;83(5):1575-80 [PMID: 9375322]
  40. J Appl Physiol (1985). 2004 Aug;97(2):773-80 [PMID: 15107408]
  41. J Appl Physiol (1985). 2005 Dec;99(6):2115-20 [PMID: 16099895]
  42. Circ Res. 1995 Mar;76(3):448-56 [PMID: 7859390]
  43. Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2434-47 [PMID: 15271665]
  44. N Engl J Med. 2002 Dec 12;347(24):1941-51 [PMID: 12477945]
  45. J Appl Physiol (1985). 2001 Jan;90(1):172-8 [PMID: 11133908]
  46. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1629-35 [PMID: 7107472]
  47. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):844-50 [PMID: 6295989]
  48. Am J Physiol Heart Circ Physiol. 2000 Oct;279(4):H1890-7 [PMID: 11009477]
  49. Angiology. 1970 Mar;21(3):188-92 [PMID: 5438285]
  50. J Appl Physiol (1985). 1995 Jul;79(1):73-82 [PMID: 7559251]
  51. J Appl Physiol. 1971 Oct;31(4):550-5 [PMID: 5111000]
  52. Am J Physiol. 1997 Sep;273(3 Pt 2):H1255-65 [PMID: 9321814]
  53. News Physiol Sci. 1999 Jun;14:121-125 [PMID: 11390835]
  54. Br J Pharmacol. 1997 Feb;120(3):387-92 [PMID: 9031740]
  55. Circ Res. 1996 Jul;79(1):62-9 [PMID: 8925570]
  56. Exerc Sport Sci Rev. 2001 Oct;29(4):159-63 [PMID: 11688788]
  57. J Physiol. 2003 Aug 15;551(Pt 1):337-44 [PMID: 12824451]
  58. J Appl Physiol (1985). 2004 Jul;97(1):417-23; discussion 416 [PMID: 15020577]

Grants

  1. R01 HL037387/NHLBI NIH HHS
  2. R01-HL37387/NHLBI NIH HHS
  3. T32-AR48523/NIAMS NIH HHS
  4. R01 HL036088/NHLBI NIH HHS
  5. R01-HL36088/NHLBI NIH HHS
  6. T32 AR048523/NIAMS NIH HHS

MeSH Term

Acetylcholine
Adrenergic alpha-Agonists
Adrenergic alpha-Antagonists
Animals
Arginine
Blood Pressure
Blood Vessels
Body Weight
Collateral Circulation
Heart Rate
Hindlimb
Ischemia
Male
Muscle, Skeletal
Phentolamine
Phenylephrine
Physical Conditioning, Animal
Rats
Rats, Sprague-Dawley
Receptors, Adrenergic, alpha
Receptors, G-Protein-Coupled
Receptors, Neuropeptide
Regional Blood Flow
Vasoconstriction
Vasodilator Agents

Chemicals

Adrenergic alpha-Agonists
Adrenergic alpha-Antagonists
BIBP 3226
Npy1r protein, rat
Receptors, Adrenergic, alpha
Receptors, G-Protein-Coupled
Receptors, Neuropeptide
Vasodilator Agents
Phenylephrine
Arginine
Acetylcholine
Phentolamine

Word Cloud

Created with Highcharts 10.0.00collateralcircuitinhibitionreceptorP<SedTrainedgroup+/-exerciseY1Acutefemoralartery001increasedNPYocclusionanimalsmmHgconductanceactive02sympathetic-1eventrainingevaluatedneuropeptideYvasoconstrictionmeasuredBPsapproximatelyabsencevasculartime4103conductancescompared6%Thusinfluencegreaterpresencegvesselscontrolstudyrolealpha-adrenergicreceptor-receptor-mediatedhindlimbAnimalseitherday3weeksfollowing3-weekturnlimitedcageactivitygivendailyCollateral-dependentbloodflowsBFsmicrospheresalpha-receptorphentolamineBIBP3226runningspeedBloodpressurescaudaldistalArterialreducedalpha-inhibition50-6075Effectiveexperimentalsympatholysisverified50-100%increasesmusclesaffectedminimal1353Combined00511637%6315groupsremainedbecamelessinfluentialpost-occlusionCollateralcollectively01irrespectiveConductancesischaemiccalfmusclecombinedsuboptimalexceptionallyhighvalueseredfibresectiongastrocnemius:7mlmin100promulgatedadaptationspartraisespotentialreductionsBFpossiblestructureHoweverreleasesignificantlyprobablyduenetworkstructurallylargerAlpha-adrenergicconductance:

Similar Articles

Cited By