Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.

Boguslaw Nocek, Samvel Kochinyan, Michael Proudfoot, Greg Brown, Elena Evdokimova, Jerzy Osipiuk, Aled M Edwards, Alexei Savchenko, Andrzej Joachimiak, Alexander F Yakunin
Author Information
  1. Boguslaw Nocek: Midwest Center for Structural Genomics, Department of Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA.

Abstract

Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.

Associated Data

PDB | 3CZP; 3CZQ

References

  1. J Bacteriol. 2005 Mar;187(5):1859-65 [PMID: 15716459]
  2. J Chromatogr B Biomed Sci Appl. 1997 Apr 11;691(2):425-32 [PMID: 9174280]
  3. J Synchrotron Radiat. 2006 Jan;13(Pt 1):30-45 [PMID: 16371706]
  4. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16678-83 [PMID: 12486232]
  5. J Mol Biol. 2007 Dec 7;374(4):1091-103 [PMID: 17976651]
  6. Eur J Biochem. 1998 Apr 1;253(1):280-91 [PMID: 9578487]
  7. Anal Biochem. 2001 Aug 15;295(2):129-37 [PMID: 11488613]
  8. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14045-50 [PMID: 9826650]
  9. J Biol Chem. 1994 Apr 15;269(15):10996-1001 [PMID: 8157625]
  10. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16684-8 [PMID: 12482933]
  11. FEBS Lett. 1998 Jun 12;429(2):194-6 [PMID: 9650588]
  12. J Mol Biol. 2003 Apr 11;327(5):1077-92 [PMID: 12662932]
  13. Nat Struct Biol. 1997 Aug;4(8):601-4 [PMID: 9253404]
  14. Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):247-55 [PMID: 10089417]
  15. J Bacteriol. 1996 Mar;178(5):1394-400 [PMID: 8631717]
  16. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9636-41 [PMID: 10931957]
  17. J Biol Chem. 1990 Jul 15;265(20):11734-9 [PMID: 2164013]
  18. Anal Biochem. 1995 Nov 20;232(1):98-106 [PMID: 8600840]
  19. Structure. 2001 Nov;9(11):1095-106 [PMID: 11709173]
  20. Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16085-7 [PMID: 15520374]
  21. Biochim Biophys Acta. 1998 Jul 17;1372(2):153-62 [PMID: 9675265]
  22. J Mol Biol. 2003 Oct 31;333(4):781-815 [PMID: 14568537]
  23. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14391-5 [PMID: 8962061]
  24. Adv Microb Physiol. 1983;24:83-171 [PMID: 6320606]
  25. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15876-80 [PMID: 15496465]
  26. Arch Biochem Biophys. 1996 Jun 15;330(2):373-9 [PMID: 8660667]
  27. Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66 [PMID: 16855301]
  28. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  29. J Mol Biol. 2001 Aug 3;311(1):87-100 [PMID: 11469859]
  30. Annu Rev Biochem. 1999;68:89-125 [PMID: 10872445]
  31. Trends Biochem Sci. 2008 Jun;33(6):284-90 [PMID: 18487048]
  32. J Mol Biol. 2008 Jan 4;375(1):301-15 [PMID: 18021800]

Grants

  1. U54 GM074942/NIGMS NIH HHS
  2. U54 GM074942-04S2/NIGMS NIH HHS
  3. GM074942/NIGMS NIH HHS

MeSH Term

Adenosine Diphosphate
Adenosine Triphosphate
Alanine
Amino Acid Sequence
Catalysis
Catalytic Domain
Crystallography, X-Ray
Kinetics
Models, Molecular
Molecular Sequence Data
Mutagenesis
Phosphotransferases (Phosphate Group Acceptor)
Polyphosphates
Protein Structure, Secondary
Protein Structure, Tertiary
Pseudomonas aeruginosa
Sequence Alignment
Sinorhizobium meliloti
Substrate Specificity

Chemicals

Polyphosphates
Adenosine Diphosphate
Adenosine Triphosphate
Phosphotransferases (Phosphate Group Acceptor)
polyphosphate kinase
Alanine

Word Cloud

Created with Highcharts 10.0.0polyPPPK2residues2kinasesADPATPproteinspolyphosphateenergyprokaryotesmolecularsynthesisstructureslidmechanismbacteriaInorganiclinearpolymertenshundredsphosphatelinkedhigh-energybondsfoundorganismsproposedservesourcepre-ATPworldubiquitousabundantbiopolymerplaysnumerousvitalrolesmetabolismregulationeukaryotesunderlyingmechanismsactivitiesremainunknownutilizationcatalyzedfamiliesPPK1polyphosphatasespresentstructuralfunctionalcharacterizationfamilyProteinssingledomaincatalyzepolyP-dependentphosphorylationwhereascontainingfuseddomainsphosphorylateAMPCrystalrepresentativeSMc02148SinorhizobiummelilotiPA3455Pseudomonasaeruginosarevealed3-layeralpha/beta/alphasandwichfoldalpha-helicalsimilarmicrobialthymidylatesuggestingsharecommonevolutionaryorigincatalyticAlaninereplacementmutagenesisidentified9conservedrequiredactivityincludeWalkerBmotifsThusPPK2srepresentpotentiallyallowuseintracellularreservegenerationsurvivalPolyphosphate-dependentfamily-2

Similar Articles

Cited By