High-resolution mapping of plasmid transcriptomes in different host bacteria.

Masatoshi Miyakoshi, Hiromi Nishida, Masaki Shintani, Hisakazu Yamane, Hideaki Nojiri
Author Information
  1. Masatoshi Miyakoshi: Biotechnology Research Center, The University of Tokyo, Tokyo, Japan. mmiyakoshi@ige.tohoku.ac.jp

Abstract

BACKGROUND: Plasmids are extrachromosomal elements that replicate autonomously, and many can be transmitted between bacterial cells through conjugation. Although the transcription pattern of genes on a plasmid can be altered by a change in host background, the expression range of plasmid genes that will result in phenotypic variation has not been quantitatively investigated.
RESULTS: Using a microarray with evenly tiled probes at a density of 9 bp, we mapped and quantified the transcripts of the carbazole catabolic plasmid pCAR1 in its original host Pseudomonas resinovorans CA10 and the transconjugant P. putida KT2440(pCAR1) during growth on either carbazole or succinate as the sole carbon source. We identified the operons in pCAR1, which consisted of nearly identical transcription units despite the difference in host background during growth on the same carbon source. In accordance with previous studies, the catabolic operons for carbazole degradation were upregulated during growth on carbazole in both hosts. However, our tiling array results also showed that several operons flanking the transfer gene cluster were transcribed at significantly higher levels in the transconjugant than in the original host. The number of transcripts and the positions of the transcription start sites agreed with our quantitative RT-PCR and primer extension results.
CONCLUSION: Our tiling array results indicate that the levels of transcription for the operons on a plasmid can vary by host background. High-resolution mapping using an unbiased tiling array is a valuable tool for the simultaneous identification and quantification of prokaryotic transcriptomes including polycistronic operons and non-coding RNAs.

Associated Data

GEO | GSE10862

References

  1. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  2. J Biol Chem. 2006 Mar 31;281(13):8450-7 [PMID: 16455652]
  3. J Mol Biol. 2007 May 25;369(1):11-26 [PMID: 17408691]
  4. J Bacteriol. 2002 Jun;184(12):3194-202 [PMID: 12029035]
  5. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D45-9 [PMID: 14681355]
  6. Trends Genet. 2005 Feb;21(2):93-102 [PMID: 15661355]
  7. J Mol Biol. 2003 Feb 7;326(1):21-33 [PMID: 12547188]
  8. Appl Microbiol Biotechnol. 2005 May;67(3):370-82 [PMID: 15856217]
  9. Nat Rev Microbiol. 2005 Sep;3(9):722-32 [PMID: 16138100]
  10. Appl Environ Microbiol. 2006 May;72(5):3206-16 [PMID: 16672459]
  11. Science. 2007 Jan 12;315(5809):251-2 [PMID: 17218529]
  12. J Bacteriol. 2001 Jun;183(12):3663-79 [PMID: 11371531]
  13. Gene. 2004 Jul 21;336(2):231-40 [PMID: 15246534]
  14. Annu Rev Microbiol. 1997;51:341-73 [PMID: 9343354]
  15. J Bacteriol. 2002 Aug;184(15):4259-69 [PMID: 12107144]
  16. Environ Microbiol. 2002 Dec;4(12):799-808 [PMID: 12534463]
  17. J Bacteriol. 2007 Oct;189(19):6849-60 [PMID: 17675379]
  18. Nat Biotechnol. 2007 May;25(5):584-92 [PMID: 17401361]
  19. Nat Biotechnol. 2000 Dec;18(12):1262-8 [PMID: 11101804]
  20. J Bacteriol. 2002 Sep;184(18):5158-69 [PMID: 12193633]
  21. Nat Rev Genet. 2007 Jun;8(6):413-23 [PMID: 17486121]
  22. BMC Microbiol. 2006 Sep 18;6:80 [PMID: 16981998]
  23. Genome Res. 2004 Mar;14(3):331-42 [PMID: 14993201]
  24. J Struct Biol. 2006 Oct;156(1):200-9 [PMID: 16677824]
  25. Mol Biol Cell. 2002 Oct;13(10):3369-87 [PMID: 12388743]
  26. Plasmid. 2004 Nov;52(3):182-202 [PMID: 15518875]
  27. Biotechnol Lett. 2005 Dec;27(23-24):1847-53 [PMID: 16328978]
  28. Biochem Soc Trans. 2006 Dec;34(Pt 6):1072-4 [PMID: 17073753]
  29. J Bacteriol. 2004 Oct;186(20):6815-23 [PMID: 15466034]

MeSH Term

Carbazoles
Chromosome Mapping
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genes, Bacterial
Multigene Family
Oligonucleotide Array Sequence Analysis
Operon
Plasmids
Pseudomonas
RNA, Bacterial
Transcription, Genetic

Chemicals

Carbazoles
RNA, Bacterial
carbazole

Word Cloud

Created with Highcharts 10.0.0hostplasmidoperonstranscriptioncarbazolecanbackgroundpCAR1growthtilingarrayresultsgenestranscriptscatabolicoriginaltransconjugantcarbonsourcelevelsHigh-resolutionmappingtranscriptomesBACKGROUND:PlasmidsextrachromosomalelementsreplicateautonomouslymanytransmittedbacterialcellsconjugationAlthoughpatternalteredchangeexpressionrangewillresultphenotypicvariationquantitativelyinvestigatedRESULTS:Usingmicroarrayevenlytiledprobesdensity9bpmappedquantifiedPseudomonasresinovoransCA10PputidaKT2440eithersuccinatesoleidentifiedconsistednearlyidenticalunitsdespitedifferenceaccordancepreviousstudiesdegradationupregulatedhostsHoweveralsoshowedseveralflankingtransfergeneclustertranscribedsignificantlyhighernumberpositionsstartsitesagreedquantitativeRT-PCRprimerextensionCONCLUSION:indicatevaryusingunbiasedvaluabletoolsimultaneousidentificationquantificationprokaryoticincludingpolycistronicnon-codingRNAsdifferentbacteria

Similar Articles

Cited By