Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells.

Donatella Valdembri, Patrick T Caswell, Kurt I Anderson, Juliane P Schwarz, Ireen König, Elena Astanina, Francesca Caccavari, Jim C Norman, Martin J Humphries, Federico Bussolino, Guido Serini
Author Information
  1. Donatella Valdembri: Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy.

Abstract

Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes alpha5beta1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with alpha5beta1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active alpha5beta1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with alpha5beta1, and the associated motor myosin VI (Myo6) support active alpha5beta1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active alpha5beta1. Nrp1 modulation of alpha5beta1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice.

References

  1. Nat Cell Biol. 2005 Jun;7(6):581-90 [PMID: 15895076]
  2. Development. 2005 Mar;132(5):941-52 [PMID: 15673567]
  3. FASEB J. 2007 Mar;21(3):915-26 [PMID: 17185751]
  4. Exp Cell Res. 2006 Mar 10;312(5):651-8 [PMID: 16325811]
  5. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8144-9 [PMID: 15146066]
  6. EMBO J. 2007 Jun 6;26(11):2682-92 [PMID: 17510632]
  7. Nature. 2003 Jun 19;423(6942):876-81 [PMID: 12815434]
  8. J Neurosci. 1999 Aug 1;19(15):6519-27 [PMID: 10414980]
  9. Curr Opin Cell Biol. 2006 Jun;18(3):261-6 [PMID: 16687246]
  10. Nature. 2003 Jul 24;424(6947):391-7 [PMID: 12879061]
  11. Neuron. 1998 Nov;21(5):1093-100 [PMID: 9856464]
  12. J Cell Biol. 2000 Jul 24;150(2):F89-96 [PMID: 10908592]
  13. Dev Cell. 2007 Oct;13(4):496-510 [PMID: 17925226]
  14. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  15. Cancer Lett. 2006 Jan 8;231(1):1-11 [PMID: 16356825]
  16. Nat Rev Mol Cell Biol. 2006 May;7(5):359-71 [PMID: 16633338]
  17. FASEB J. 2005 Feb;19(2):270-1 [PMID: 15579670]
  18. J Cell Sci. 2005 Jan 15;118(Pt 2):291-300 [PMID: 15615773]
  19. J Thromb Haemost. 2007 Jul;5 Suppl 1:32-40 [PMID: 17635706]
  20. J Cell Biol. 1999 Jul 12;146(1):233-42 [PMID: 10402473]
  21. Mol Cell. 2000 Oct;6(4):851-60 [PMID: 11090623]
  22. J Cell Biol. 2001 Jun 25;153(7):1427-40 [PMID: 11425873]
  23. Trends Cell Biol. 2008 Jun;18(6):257-63 [PMID: 18456497]
  24. Mol Cell Biol. 2006 Dec;26(23):8942-52 [PMID: 17015470]
  25. EMBO J. 2007 Jul 25;26(14):3484-93 [PMID: 17581628]
  26. Genes Dev. 2002 Oct 15;16(20):2684-98 [PMID: 12381667]
  27. Mol Cell. 2006 Sep 1;23(5):749-55 [PMID: 16949370]
  28. Blood. 2005 Mar 1;105(5):1992-9 [PMID: 15522955]
  29. Curr Opin Cell Biol. 2006 Oct;18(5):549-57 [PMID: 16904305]
  30. Mol Cell Neurosci. 2003 Oct;24(2):409-18 [PMID: 14572462]
  31. J Cell Sci. 2006 Sep 15;119(Pt 18):3723-31 [PMID: 16959902]
  32. Curr Biol. 2001 Sep 18;11(18):1392-402 [PMID: 11566097]
  33. Dev Cell. 2006 Jun;10(6):783-95 [PMID: 16740480]
  34. Am J Pathol. 2006 Nov;169(5):1523-6 [PMID: 17071577]
  35. Blood. 2006 May 15;107(10):3892-901 [PMID: 16424390]
  36. J Biol Chem. 2007 Sep 7;282(36):26294-305 [PMID: 17569671]
  37. J Cell Biol. 2000 Mar 20;148(6):1283-93 [PMID: 10725340]
  38. Mech Dev. 2001 Nov;109(1):115-9 [PMID: 11677062]
  39. Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H1220-5 [PMID: 16258027]
  40. Dev Cell. 2003 Jul;5(1):45-57 [PMID: 12852851]
  41. Traffic. 2001 Nov;2(11):764-74 [PMID: 11733042]
  42. Nat Rev Mol Cell Biol. 2001 May;2(5):392-6 [PMID: 11331914]
  43. Mech Dev. 2000 Oct;97(1-2):35-45 [PMID: 11025205]
  44. Cardiovasc Res. 2008 May 1;78(2):213-22 [PMID: 18285512]
  45. J Clin Invest. 2000 Feb;105(3):261-70 [PMID: 10675351]
  46. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  47. Development. 2007 May;134(10):1833-43 [PMID: 17428830]
  48. Curr Opin Cell Biol. 2005 Oct;17(5):509-16 [PMID: 16099636]
  49. J Biol Chem. 2001 Sep 28;276(39):36535-42 [PMID: 11479315]
  50. Development. 1999 Nov;126(21):4895-902 [PMID: 10518505]
  51. EMBO J. 2003 Apr 15;22(8):1771-9 [PMID: 12682010]
  52. FASEB J. 2007 May;21(7):1292; author reply 1293 [PMID: 17470574]
  53. J Cell Biol. 1998 May 4;141(3):805-14 [PMID: 9566978]
  54. Curr Opin Biotechnol. 2005 Feb;16(1):19-27 [PMID: 15722011]
  55. Cancer Biol Ther. 2007 Aug;6(8):1173-80 [PMID: 17726369]
  56. Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 [PMID: 11252952]
  57. Nat Med. 1999 May;5(5):495-502 [PMID: 10229225]
  58. J Biol Chem. 2003 Dec 5;278(49):48848-60 [PMID: 14514674]
  59. J Biol Chem. 1999 Dec 3;274(49):35172-8 [PMID: 10575000]
  60. Nat Med. 2006 Dec;12(12):1380-9 [PMID: 17099709]
  61. Blood. 2006 Feb 1;107(3):931-9 [PMID: 16219802]
  62. J Cell Biol. 2006 Jun 5;173(5):767-80 [PMID: 16754960]
  63. Dev Dyn. 2004 Nov;231(3):474-88 [PMID: 15376313]
  64. Cancer Cell. 2004 Nov;6(5):485-95 [PMID: 15542432]
  65. Nature. 1996 Oct 10;383(6600):525-8 [PMID: 8849723]
  66. Cell. 2007 Aug 24;130(4):691-703 [PMID: 17719546]
  67. Nat Rev Mol Cell Biol. 2007 Jun;8(6):464-78 [PMID: 17522591]
  68. Physiol Rev. 2005 Jul;85(3):979-1000 [PMID: 15987800]
  69. EMBO J. 2004 Jul 7;23(13):2531-43 [PMID: 15192707]
  70. Am J Pathol. 2006 Nov;169(5):1843-54 [PMID: 17071605]
  71. Blood. 2006 Sep 1;108(5):1661-7 [PMID: 16684957]
  72. Dev Biol. 1988 Feb;125(2):441-50 [PMID: 3338622]
  73. Cell. 1998 Mar 20;92(6):735-45 [PMID: 9529250]
  74. Nat Rev Mol Cell Biol. 2003 Oct;4(10):767-76 [PMID: 14570053]
  75. Curr Opin Cell Biol. 2004 Apr;16(2):189-94 [PMID: 15196563]

Grants

  1. /Wellcome Trust
  2. GGP04127/Telethon

MeSH Term

Adaptor Proteins, Signal Transducing
Animals
Carrier Proteins
Cell Adhesion
Endothelium, Vascular
Fibronectins
Humans
Integrin alpha5beta1
Mice
Mice, Knockout
Neovascularization, Physiologic
Neuropeptides
Neuropilin-1
Protein Binding
RNA Interference
RNA, Small Interfering
Signal Transduction
Umbilical Arteries

Chemicals

Adaptor Proteins, Signal Transducing
Carrier Proteins
Fibronectins
Gipc1 protein, mouse
Integrin alpha5beta1
Neuropeptides
RNA, Small Interfering
Neuropilin-1

Word Cloud

Created with Highcharts 10.0.0Nrp1alpha5beta1vascularVEGF-A165ECadhesionfibronectinendothelialmiceSEMA3Afunctionactive1coreceptorVEGF-A164nulldefectscellECscytoplasmicSEAmotifindependentlyspreadinginteractsGIPC1stimulatesinternalizationroleintegrinNeuropilingrowthfactorA165semaphorin3ANeverthelessembryosdisplaydifferlackingeitherSema3AproteinsFurthermorerecentlyreportedrequiredresponseVEGF-A121isoformslatterincapablebindingsurfaceTakentogetherdatasuggestphenotypecausedlossdueVEGF-A164/SEMA3A-independentextracellularmatrixusingRNAinterferencerescuewild-typemutantconstructsshowspecificallypromotesalpha5beta1-integrin-mediatedcrucialdevelopmentprovideevidencedirectlymediatingsitesBindinghomomultimericendocyticadaptorGAIPinteractingproteinCterminusmemberselectivelyRab5-positiveearlyendosomesAccordinglyalsoassociatedmotormyosinVIMyo6supportendocytosisconclusionproposeadditiondomainincreasingRab5/GIPC1/Myo6-dependentmodulationcanplaycausalgenerationangiogenesisobservedNeuropilin-1/GIPC1signalingregulatestrafficcells

Similar Articles

Cited By