Assessing the evolution of gene expression using microarray data.

Owen Z Woody, Andrew C Doxey, Brendan J McConkey
Author Information
  1. Owen Z Woody: Department of Biology, University of Waterloo, Waterloo, Ontario Canada.

Abstract

Classical studies of the evolution of gene function have predominantly focused on mutations within protein coding regions. With the advent of microarrays, however, it has become possible to evaluate the transcriptional activity of a gene as an additional characteristic of function. Recent studies have revealed an equally important role for gene regulation in the retention and evolution of duplicate genes. Here we review approaches to assessing the evolution of gene expression using microarray data, and discuss potential influences on expression divergence. Currently, there are no established standards on how best to identify and quantify instances of expression divergence. There have also been few efforts to date that incorporate suspected influences into mathematical models of expression divergence. Such developments will be crucial to a comprehensive understanding of the role gene duplications and expression evolution play in the emergence of complex traits and functional diversity. An integrative approach to gene family evolution, including both orthologous and paralogous genes, has the potential to bring strong predictive power both to the functional annotation of extant proteins and to the inference of functional characteristics of ancestral gene family members.

Keywords

References

  1. Bioinformatics. 2006 May 1;22(9):1122-9 [PMID: 16500941]
  2. Genetics. 2007 Feb;175(2):933-43 [PMID: 17151249]
  3. Mol Biol Evol. 2006 Feb;23(2):327-37 [PMID: 16237209]
  4. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5425-30 [PMID: 16567645]
  5. PLoS Comput Biol. 2006 Jun 30;2(6):e77 [PMID: 16846248]
  6. Mol Biol Evol. 2007 Feb;24(2):352-62 [PMID: 17079699]
  7. Genome Biol. 2006;7(2):R13 [PMID: 16507168]
  8. J Exp Bot. 2006;57(11):2887-97 [PMID: 16837535]
  9. Genome Biol. 2005;6(7):R56 [PMID: 15998445]
  10. Evolution. 2005 Jan;59(1):126-37 [PMID: 15792233]
  11. Trends Ecol Evol. 2006 Jan;21(1):29-37 [PMID: 16701467]
  12. Cell. 2004 Apr 16;117(2):185-98 [PMID: 15084257]
  13. Nat Biotechnol. 2000 Jun;18(6):630-4 [PMID: 10835600]
  14. Science. 2007 Jul 6;317(5834):118-21 [PMID: 17525304]
  15. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2779-84 [PMID: 17301236]
  16. Genome Biol. 2007;8(4):R50 [PMID: 17411427]
  17. Nat Genet. 2005 May;37(5):501-6 [PMID: 15806101]
  18. Development. 2002 May;129(10):2339-54 [PMID: 11973267]
  19. Genome Biol. 2006;7(9):R87 [PMID: 17010199]
  20. Nucleic Acids Res. 2005 Nov 10;33(20):e175 [PMID: 16284200]
  21. Bioinformatics. 2004 Jan 22;20(2):170-9 [PMID: 14734307]
  22. Nat Rev Genet. 2006 Sep;7(9):693-702 [PMID: 16921347]
  23. Mol Biol Evol. 2005 Oct;22(10):2113-8 [PMID: 15987875]
  24. BMC Genomics. 2005 Nov 04;6:153 [PMID: 16271148]
  25. Mol Biol Evol. 2007 Apr;24(4):1045-55 [PMID: 17272678]
  26. Biomacromolecules. 2003 Sep-Oct;4(5):1121-5 [PMID: 12959573]
  27. PLoS Biol. 2004 May;2(5):E132 [PMID: 15138501]
  28. Mol Biol Evol. 2004 Jul;21(7):1308-17 [PMID: 15034135]
  29. Mol Biol Evol. 2005 Jan;22(1):40-50 [PMID: 15356281]
  30. Trends Genet. 2007 Apr;23(4):162-6 [PMID: 17320239]
  31. Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):707-12 [PMID: 15647348]
  32. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W471-4 [PMID: 15215432]
  33. Mol Biol Evol. 2006 Feb;23(2):469-78 [PMID: 16280546]
  34. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6275-80 [PMID: 16606849]
  35. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6579-84 [PMID: 10823904]
  36. BMC Plant Biol. 2004 Jun 01;4:10 [PMID: 15171794]
  37. Theor Popul Biol. 2002 Jun;61(4):481-7 [PMID: 12167367]
  38. FEBS Lett. 2007 Jul 31;581(19):3702-10 [PMID: 17544402]
  39. Nucleic Acids Res. 2007;35(11):3705-12 [PMID: 17517782]
  40. Nature. 2002 Jul 25;418(6896):387-91 [PMID: 12140549]
  41. Genome Res. 2003 Jul;13(7):1638-45 [PMID: 12840042]
  42. Genome Biol. 2007;8(6):R109 [PMID: 17567924]
  43. Nat Genet. 2005 May;37(5):544-8 [PMID: 15852004]
  44. Genome Res. 2007 Aug;17(8):1161-9 [PMID: 17615293]
  45. Genome Res. 1998 Mar;8(3):163-7 [PMID: 9521918]
  46. Genome Biol. 2006;7(10):R89 [PMID: 17029626]
  47. Genome Res. 2004 Oct;14(10A):1870-9 [PMID: 15466287]
  48. Mol Ecol. 2006 Apr;15(5):1197-211 [PMID: 16626448]
  49. Mol Biol Evol. 2005 May;22(5):1345-54 [PMID: 15746013]
  50. Mol Biol Evol. 2007 Jun;24(6):1283-5 [PMID: 17387099]
  51. Trends Genet. 2002 Dec;18(12):609-13 [PMID: 12446139]
  52. Genetics. 2004 May;167(1):531-42 [PMID: 15166175]
  53. Nat Genet. 2006 Jul;38(7):830-4 [PMID: 16783381]
  54. Plant Physiol. 2004 Oct;136(2):3009-22 [PMID: 15489284]
  55. Mol Biol Evol. 2007 Sep;24(9):1912-25 [PMID: 17567594]

Word Cloud

Created with Highcharts 10.0.0geneevolutionexpressionfunctionaldivergencestudiesfunctionmicroarraysrolegenesusingmicroarraydatapotentialinfluencesfamilyClassicalpredominantlyfocusedmutationswithinproteincodingregionsadventhoweverbecomepossibleevaluatetranscriptionalactivityadditionalcharacteristicRecentrevealedequallyimportantregulationretentionduplicatereviewapproachesassessingdiscussCurrentlyestablishedstandardsbestidentifyquantifyinstancesalsoeffortsdateincorporatesuspectedmathematicalmodelsdevelopmentswillcrucialcomprehensiveunderstandingduplicationsplayemergencecomplextraitsdiversityintegrativeapproachincludingorthologousparalogousbringstrongpredictivepowerannotationextantproteinsinferencecharacteristicsancestralmembersAssessingduplication

Similar Articles

Cited By