Supramarginal gyrus involvement in visual word recognition.

Cornelia Stoeckel, Patricia M Gough, Kate E Watkins, Joseph T Devlin
Author Information
  1. Cornelia Stoeckel: FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK.

Abstract

INTRODUCTION: In the classic neurological model of language, the human inferior parietal lobule (IPL) plays an important role in visual word recognition. The region is both functionally and structurally heterogeneous, however, suggesting that subregions of IPL may differentially contribute to reading. The two main sub-divisions are the supramarginal (SMG) and angular gyri, which have been hypothesized to contribute preferentially to phonological and semantic aspects of word processing, respectively.
METHODS: Here we used single-pulse transcranial magnetic stimulation (TMS) to investigate the functional specificity and timing of SMG involvement in reading. Participants performed two reading tasks that focused attention on either the phonological or semantic relation between two simultaneously presented words. A third task focused attention on the visual relation between pairs of consonant letter strings to control for basic input and output characteristics of the paradigm using non-linguistic stimuli. TMS to SMG was delivered on every trial at 120, 180, 240 or 300 msec post-stimulus onset.
RESULTS: Stimulation at 180 msec produced a reliable facilitation of reaction times for both the phonological and semantic tasks, but not for the control visual task.
CONCLUSION: These findings demonstrate that SMG contributes to reading regardless of the specific task demands, and suggests this may be due to automatically computing the sound of a word even when the task does not explicitly require it.

References

  1. Psychol Sci. 2000 Jan;11(1):51-6 [PMID: 11228843]
  2. Eur J Neurosci. 2004 Sep;20(6):1681-7 [PMID: 15355336]
  3. Eur J Neurosci. 2003 Dec;18(11):3121-6 [PMID: 14656308]
  4. Ann Neurol. 2007 Nov;62(5):481-92 [PMID: 17702036]
  5. Int J Psychophysiol. 1999 Jun;32(3):215-31 [PMID: 10437633]
  6. Neuroimage. 1999 Jul;10(1):15-35 [PMID: 10385578]
  7. Nat Rev Neurosci. 2007 Sep;8(9):657-61 [PMID: 17700624]
  8. Neuroimage. 2008 Jan 15;39(2):549-52 [PMID: 17945512]
  9. Neurology. 1983 Dec;33(12):1573-83 [PMID: 6685830]
  10. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939-44 [PMID: 9671783]
  11. Exp Brain Res. 2003 May;150(2):259-63 [PMID: 12682809]
  12. Neuroimage. 2008 May 1;40(4):1841-8 [PMID: 18353682]
  13. Brain. 1980 Mar;103(1):99-112 [PMID: 6244876]
  14. J Commun Disord. 2001 Nov-Dec;34(6):479-92 [PMID: 11725860]
  15. Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1229-38 [PMID: 10466148]
  16. Psychon Bull Rev. 1994 Dec;1(4):476-90 [PMID: 24203555]
  17. Trends Cogn Sci. 2000 Apr;4(4):131-138 [PMID: 10740277]
  18. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  19. Memory. 1995 Sep-Dec;3(3-4):463-95 [PMID: 8574874]
  20. J Cogn Neurosci. 2006 Jul;18(7):1147-55 [PMID: 16839288]
  21. J Cogn Neurosci. 1997 Nov;9(6):727-33 [PMID: 23964595]
  22. J Neurosci. 2006 Jul 12;26(28):7328-36 [PMID: 16837579]
  23. Neuroimage. 2004 Aug;22(4):1819-25 [PMID: 15275938]
  24. Med Image Anal. 2001 Jun;5(2):143-56 [PMID: 11516708]
  25. Neuropsychologia. 1997 Aug;35(8):1121-31 [PMID: 9256377]
  26. Brain. 2007 Mar;130(Pt 3):610-22 [PMID: 17138570]
  27. Exp Brain Res. 1998 Aug;121(4):371-8 [PMID: 9746143]
  28. J Cogn Neurosci. 2003 Jan 1;15(1):71-84 [PMID: 12590844]
  29. Neurosci Lett. 1994 Nov 21;182(1):25-8 [PMID: 7891880]
  30. J Neurosci. 2005 Aug 31;25(35):8010-6 [PMID: 16135758]
  31. Ann Neurol. 2005 Jan;57(1):8-16 [PMID: 15597383]
  32. J Anat. 2000 Oct;197 Pt 3:335-59 [PMID: 11117622]
  33. Cereb Cortex. 2006 Oct;16(10):1418-30 [PMID: 16306320]
  34. Neuroimage. 2002 Sep;17(1):77-94 [PMID: 12482069]
  35. Eur J Neurosci. 2005 Feb;21(3):793-7 [PMID: 15733097]
  36. Curr Opin Neurobiol. 2005 Apr;15(2):231-8 [PMID: 15831408]
  37. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 [PMID: 9474057]
  38. Neuroimage. 2001 Dec;14(6):1278-89 [PMID: 11707084]
  39. Brain. 1992 Aug;115 ( Pt 4):1045-59 [PMID: 1393501]
  40. J Cogn Neurosci. 1998 Nov;10(6):766-77 [PMID: 9831743]
  41. Electroencephalogr Clin Neurophysiol. 1992 Feb;85(1):9-16 [PMID: 1371748]
  42. Biol Psychiatry. 2002 Jul 15;52(2):101-10 [PMID: 12114001]

Grants

  1. /Wellcome Trust
  2. 075481/Wellcome Trust
  3. G0400298/Medical Research Council

MeSH Term

Acoustic Stimulation
Adult
Analysis of Variance
Auditory Perception
Female
Functional Laterality
Humans
Image Processing, Computer-Assisted
Language
Language Tests
Male
Parietal Lobe
Photic Stimulation
Reaction Time
Recognition, Psychology
Semantics
Speech Perception
Transcranial Magnetic Stimulation
Visual Perception

Word Cloud

Created with Highcharts 10.0.0visualwordreadingSMGtasktwophonologicalsemanticIPLrecognitionmaycontributeTMSinvolvementtasksfocusedattentionrelationcontrol180msecINTRODUCTION:classicneurologicalmodellanguagehumaninferiorparietallobuleplaysimportantroleregionfunctionallystructurallyheterogeneoushoweversuggestingsubregionsdifferentiallymainsub-divisionssupramarginalangulargyrihypothesizedpreferentiallyaspectsprocessingrespectivelyMETHODS:usedsingle-pulsetranscranialmagneticstimulationinvestigatefunctionalspecificitytimingParticipantsperformedeithersimultaneouslypresentedwordsthirdpairsconsonantletterstringsbasicinputoutputcharacteristicsparadigmusingnon-linguisticstimulideliveredeverytrial120240300post-stimulusonsetRESULTS:StimulationproducedreliablefacilitationreactiontimesCONCLUSION:findingsdemonstratecontributesregardlessspecificdemandssuggestsdueautomaticallycomputingsoundevenexplicitlyrequireitSupramarginalgyrus

Similar Articles

Cited By