Early bilateral sensory deprivation blocks the development of coincident discharge in rat barrel cortex.

Ayan Ghoshal, Pierre Pouget, Maria Popescu, Ford Ebner
Author Information
  1. Ayan Ghoshal: Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, Tennessee 37240, USA.

Abstract

Several theories have proposed a functional role for synchronous neuronal firing in generating the neural code of a sensory perception. Synchronous neural activity develops during a critical postnatal period of cortical maturation, and severely reducing neural activity in a sensory pathway during this period could interfere with the development of coincident discharge among cortical neurons. Loss of such synchrony could provide a fundamental mechanism for the degradation of acuity shown in behavioral studies. We tested the hypothesis that synchronous discharge of barrel cortex neurons would fail to develop after sensory deprivation produced by bilateral whisker trimming from birth to postnatal day 60. By studying the correlated discharge of cortical neuron pairs, we found evidence for strong correlated firing in control animals, and this synchrony was almost absent among pairs of cortical barrel neurons in deprived animals. The degree of synchrony impairment was different in subregions of rat barrel cortex. The model that best fits the data is that cortical neurons receiving direct inputs from the primary sensory (lemniscal) pathway show the greatest decrement in synchrony following sensory deprivation, while neurons with diverse inputs from other areas of thalamus and cortex are relatively less affected in this dimension of cortical function.

References

  1. J Neurophysiol. 1993 Jul;70(1):444-7 [PMID: 8360721]
  2. Nature. 1996 Oct 31;383(6603):815-9 [PMID: 8893005]
  3. Neuroscience. 1991;41(2-3):365-79 [PMID: 1870696]
  4. J Comp Neurol. 1999 Jun 14;408(4):489-505 [PMID: 10340500]
  5. J Neurophysiol. 2003 May;89(5):2810-22 [PMID: 12611978]
  6. Cereb Cortex. 2008 May;18(5):979-89 [PMID: 17702950]
  7. Biol Cybern. 1996 Sep;75(3):253-61 [PMID: 8900039]
  8. J Neurosci. 2008 Oct 29;28(44):11153-64 [PMID: 18971458]
  9. Nature. 1987 Apr 16-22;326(6114):694-7 [PMID: 3561512]
  10. J Neurosci. 1996 Apr 15;16(8):2750-7 [PMID: 8786450]
  11. J Neurophysiol. 2004 Sep;92(3):1464-78 [PMID: 15056676]
  12. J Neurophysiol. 2006 Jun;95(6):3865-74 [PMID: 16510775]
  13. Neural Comput. 1999 Oct 1;11(7):1537-51 [PMID: 10490937]
  14. J Neurophysiol. 2005 Oct;94(4):2928-39 [PMID: 16160096]
  15. J Neurosci Methods. 1996 Feb;64(2):219-25 [PMID: 8699883]
  16. J Neurophysiol. 1989 Feb;61(2):311-30 [PMID: 2918357]
  17. J Neurophysiol. 2006 Aug;96(2):746-64 [PMID: 16835364]
  18. J Neurophysiol. 2005 Dec;94(6):3987-95 [PMID: 16093330]
  19. Exp Brain Res. 2006 Mar;169(3):311-25 [PMID: 16284753]
  20. Neuron. 2001 Nov 8;32(3):503-14 [PMID: 11709160]
  21. J Neurophysiol. 2005 Nov;94(5):3342-56 [PMID: 16014795]
  22. Science. 2006 Jun 16;312(5780):1622-7 [PMID: 16778049]
  23. J Neurosci. 1993 Apr;13(4):1601-15 [PMID: 8463838]
  24. J Neurosci. 2004 Jun 30;24(26):5931-41 [PMID: 15229241]
  25. J Neurosci. 2003 Jan 1;23(1):358-66 [PMID: 12514235]
  26. Neuron. 2003 Apr 24;38(2):277-89 [PMID: 12718861]
  27. Eur J Neurosci. 1999 Oct;11(10):3517-30 [PMID: 10564360]
  28. J Neurophysiol. 2007 Jun;97(6):4380-5 [PMID: 17392411]
  29. J Neurophysiol. 1965 Nov;28(6):1060-72 [PMID: 5883732]
  30. Hear Res. 2001 Jul;157(1-2):1-42 [PMID: 11470183]
  31. J Physiol. 1988 Jan;395:639-60 [PMID: 3411490]
  32. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9136-40 [PMID: 1924376]
  33. IEEE Trans Biomed Eng. 1989 Jan;36(1):4-14 [PMID: 2646211]
  34. J Neurophysiol. 1999 May;81(5):2243-52 [PMID: 10322063]
  35. Neuron. 2001 Mar;29(3):769-77 [PMID: 11301035]
  36. Neural Comput. 1999 Jan 1;11(1):91-101 [PMID: 9950724]
  37. J Neurosci. 2000 Aug 15;20(16):6135-43 [PMID: 10934263]
  38. J Neurophysiol. 1989 May;61(5):900-17 [PMID: 2723733]
  39. J Neurophysiol. 2007 Sep;98(3):1645-61 [PMID: 17596415]
  40. Hear Res. 2007 Jul;229(1-2):69-80 [PMID: 17296278]
  41. J Neurophysiol. 1998 Feb;79(2):567-82 [PMID: 9463422]

Grants

  1. R01 NS025907/NINDS NIH HHS
  2. R01 NS025907-18/NINDS NIH HHS
  3. NS 25907/NINDS NIH HHS

MeSH Term

Action Potentials
Afferent Pathways
Animals
Cerebral Cortex
Physical Stimulation
Rats
Rats, Long-Evans
Reaction Time
Sensory Deprivation
Sensory Receptor Cells
Septum of Brain
Time Factors
Vibrissae

Word Cloud

Created with Highcharts 10.0.0sensorycorticalneuronsdischargesynchronybarrelcortexneuraldeprivationsynchronousfiringactivitypostnatalperiodpathwaydevelopmentcoincidentamongbilateralcorrelatedpairsanimalsratinputsSeveraltheoriesproposedfunctionalroleneuronalgeneratingcodeperceptionSynchronousdevelopscriticalmaturationseverelyreducinginterfereLossprovidefundamentalmechanismdegradationacuityshownbehavioralstudiestestedhypothesisfaildevelopproducedwhiskertrimmingbirthday60studyingneuronfoundevidencestrongcontrolalmostabsentdepriveddegreeimpairmentdifferentsubregionsmodelbestfitsdatareceivingdirectprimarylemniscalshowgreatestdecrementfollowingdiverseareasthalamusrelativelylessaffecteddimensionfunctionEarlyblocks

Similar Articles

Cited By (10)