Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips.

Yun-Shien Lee, Chun-Houh Chen, Chi-Neu Tsai, Chia-Lung Tsai, Angel Chao, Tzu-Hao Wang
Author Information
  1. Yun-Shien Lee: Department of Biotechnology, Ming Chuan University, Tao-Yuan, Taiwan.

Abstract

Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11-20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that 'labeling extension values (LEVs)', which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukaryotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of 'laboratory signatures'. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data.

References

  1. Trends Genet. 2003 Jul;19(7):362-5 [PMID: 12850439]
  2. Nucleic Acids Res. 2003 Oct 1;31(19):5676-84 [PMID: 14500831]
  3. Nucleic Acids Res. 2003 Feb 15;31(4):e15 [PMID: 12582260]
  4. Bioinformatics. 2006 Oct 1;22(19):2405-12 [PMID: 16882653]
  5. Nat Genet. 2003 Dec;35(4):292-3 [PMID: 14647279]
  6. Nucleic Acids Res. 2007;35(10):e72 [PMID: 17478523]
  7. Biol Psychiatry. 2004 Feb 15;55(4):329-36 [PMID: 14960284]
  8. Biol Direct. 2007 Apr 11;2:9 [PMID: 17428341]
  9. Radiat Res. 2008 Jan;169(1):76-86 [PMID: 18159954]
  10. Lancet. 2003 Aug 2;362(9381):362-9 [PMID: 12907009]
  11. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  12. Bioinformatics. 2004 Feb 12;20(3):307-15 [PMID: 14960456]
  13. Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 [PMID: 17245413]
  14. Biotechniques. 2000 Sep;29(3):548-50, 552-4, 556 passim [PMID: 10997270]
  15. Taiwan J Obstet Gynecol. 2007 Sep;46(3):222-9 [PMID: 17962100]
  16. Nat Biotechnol. 2006 Dec;24(12):1476-7 [PMID: 17160039]
  17. Stem Cells. 2007 Oct;25(10):2511-23 [PMID: 17556597]
  18. Science. 2004 Oct 22;306(5696):630-1 [PMID: 15499004]
  19. Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5 [PMID: 17099226]
  20. Cancer Res. 2003 May 1;63(9):2200-5 [PMID: 12727840]
  21. Lab Invest. 2007 Apr;87(4):383-91 [PMID: 17297435]
  22. OMICS. 2006 Fall;10(3):358-68 [PMID: 17069513]
  23. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 [PMID: 11134512]
  24. Science. 1999 Oct 15;286(5439):531-7 [PMID: 10521349]
  25. Nat Biotechnol. 2006 Sep;24(9):1162-9 [PMID: 17061323]
  26. Toxicol Lett. 2005 Jul 28;158(1):20-9 [PMID: 15871913]
  27. N Engl J Med. 2004 Apr 29;350(18):1814-6 [PMID: 15115827]
  28. Breast Cancer Res Treat. 2009 Mar;114(1):47-62 [PMID: 18373191]
  29. Nat Biotechnol. 2006 Sep;24(9):1151-61 [PMID: 16964229]
  30. Nucleic Acids Res. 2004 May 25;32(9):e74 [PMID: 15161944]
  31. Biostatistics. 2006 Apr;7(2):198-212 [PMID: 16135694]

MeSH Term

Animals
Bacteria
Data Interpretation, Statistical
Gene Expression
Gene Expression Profiling
Humans
Laboratories
Oligonucleotide Array Sequence Analysis
Oligonucleotide Probes
Rats
Reproducibility of Results

Chemicals

Oligonucleotide Probes

Word Cloud

Created with Highcharts 10.0.0AffymetrixLEVsmicroarraydataGeneChipsGEVsRNAlabelinglaboratorydifferentextensionprobegeneexpressioneukaryoticfilteringgenesInterlaboratorycomparisonevenusingplatformimposesseveralchallengesscientistsqualityefficiencyhybridizationproceduresdata-miningtoolscancontributevariations11-2025-meroligonucleotidesusedmeasureleveltranscriptreport'labelingvalues'correlationcoefficientsintensitiespositionshighlycorrelatedlevelsanalyzingpubliclyavailable2414celfiles20typescovering13speciesfoundcorrelationsexistRNAsprokaryoticonesSurprisinglyresultsspecimensanalyzedlaboratoriesclearlydifferentiatedleadingidentification'laboratorysignatures'examineddatasetGSE10797high-LEVcompromisediscoverybiologicalprocessesconstructeddifferentiallyexpressedconclusionprovidenewparameteranalysismayimproveinter-intralaboratorycomparabilityMicroarrayvalues:signatures

Similar Articles

Cited By