Patterns of intraspecific DNA variation in the Daphnia nuclear genome.

Angela R Omilian, Michael Lynch
Author Information
  1. Angela R Omilian: Department of Biology, Indiana University, Bloomington, Indiana 47405, USA. alr2@buffalo.edu

Abstract

Understanding nucleotide variation in natural populations has been a subject of great interest for decades. However, many taxonomic groups, especially those with atypical life history attributes remain unstudied, and Drosophila is the only arthropod genus for which DNA polymorphism data are presently abundant. As a result of the recent release of the complete genome sequence and a wide variety of new genomic resources, the Daphnia system is quickly becoming a promising new avenue for expanding our knowledge of nucleotide variation in natural populations. Here, we examine nucleotide variation in six protein-coding loci for Daphnia pulex and its congeners with particular emphasis on D. pulicaria, the closest extant relative of D. pulex. Levels of synonymous intraspecific variation, pi(s), averaged 0.0136 for species in the Daphnia genus, and are slightly lower than most prior estimates in invertebrates. Tests of neutrality indicated that segregating variation conforms to neutral model expectations for the loci that we examined in most species, while K(a)/K(s) ratios revealed strong purifying selection. Using a full maximum-likelihood coalescent-based method, the ratio of the recombination rate to the mutation rate (c/u), averaged 0.5255 for species of the Daphnia genus. Lastly, a divergence population-genetics approach was used to investigate gene flow and divergence between D. pulex and D. pulicaria.

Associated Data

GENBANK | EU918429; EU918430; EU918431; EU918432; EU918433; EU918434; EU918435; EU918436; EU918437; EU918438; EU918439; EU918440; EU918441; EU918442; EU918443; EU918444; EU918445; EU918446; EU918447; EU918448; EU918449; EU918450; EU918451; EU918452; EU918453; EU918454; EU918455; EU918456; EU918457; EU918458; EU918459; EU918460; EU918461; EU918462; EU918463; EU918464; EU918465; EU918466; EU918467; EU918468; EU918469; EU918470; EU918471; EU918472; EU918473; EU918474; EU918475; EU918476; EU918477; EU918478; EU918479; EU918480; EU918481; EU918482; EU918483; EU918484; EU918485; EU918486; EU918487; EU918488; EU918489; EU918490; EU918491; EU918492; EU918493; EU918494; EU918495; EU918496; EU918497; EU918498; EU918499; EU918500; EU918501; EU918502; EU918503; EU918504; EU918505; EU918506; EU918507; EU918508; EU918509; EU918510; EU918511; EU918512; EU918513; EU918514; EU918515; EU918516; EU918517; EU918518; EU918519; EU918520; EU918521; EU918522; EU918523; EU918524; EU918525; EU918526; EU918527; EU918528; EU918529; EU918530; EU918531; EU918532; EU918533; EU918534; EU918535; EU918536; EU918537; EU918538; EU918539; EU918540; EU918541; EU918542; EU918543; EU918544; EU918545; EU918546; EU918547; EU918548; EU918549; EU918550; EU918551; EU918552; EU918553; EU918554; EU918555; EU918556; EU918557; EU918558; EU918559; EU918560

References

  1. Evolution. 2000 Aug;54(4):1092-101 [PMID: 11005279]
  2. Theor Appl Genet. 2002 Feb;104(2-3):482-489 [PMID: 12582722]
  3. Mol Ecol. 2008 Apr;17(7):1789-800 [PMID: 18284570]
  4. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  5. Trends Ecol Evol. 2001 Jan 1;16(1):37-45 [PMID: 11146143]
  6. Mol Phylogenet Evol. 1998 Apr;9(2):225-35 [PMID: 9562982]
  7. Mol Biol Evol. 1990 Sep;7(5):444-58 [PMID: 2263195]
  8. Genetics. 2008 Sep;180(1):317-27 [PMID: 18689898]
  9. Theor Popul Biol. 1975 Apr;7(2):256-76 [PMID: 1145509]
  10. Evolution. 1986 Jul;40(4):756-766 [PMID: 28556163]
  11. Evolution. 1989 Aug;43(5):1004-1015 [PMID: 28564164]
  12. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  13. Genet Res. 1987 Dec;50(3):245-50 [PMID: 3443297]
  14. Mol Biol Evol. 1993 Mar;10(2):271-81 [PMID: 8487630]
  15. Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1337):349-60 [PMID: 8730787]
  16. Genetics. 1998 Mar;148(3):1397-9 [PMID: 9539452]
  17. Genetics. 2005 Mar;169(3):1601-15 [PMID: 15654111]
  18. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  19. Genetics. 1974 Jun;77(2):323-34 [PMID: 4847154]
  20. Genetics. 1943 Mar;28(2):114-38 [PMID: 17247074]
  21. Genetics. 2004 Jun;167(2):747-60 [PMID: 15238526]
  22. Mol Biol Evol. 1996 Jan;13(1):261-77 [PMID: 8583899]
  23. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  24. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10818-23 [PMID: 12947038]
  25. Nature. 2007 Jan 4;445(7123):82-5 [PMID: 17203060]
  26. Mol Biol Evol. 2002 Apr;19(4):472-88 [PMID: 11919289]
  27. Comp Biochem Physiol C Toxicol Pharmacol. 2006 Jan-Feb;142(1-2):66-76 [PMID: 16311075]
  28. BMC Evol Biol. 2007 Apr 02;7:52 [PMID: 17407568]
  29. Genome. 2005 Aug;48(4):606-9 [PMID: 16094427]
  30. Evolution. 1989 Aug;43(5):1016-1026 [PMID: 28564160]
  31. J Mol Evol. 1989 Aug;29(2):170-9 [PMID: 2509717]
  32. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2785-90 [PMID: 17301231]
  33. Mol Biol Evol. 2008 Oct;25(10):2129-39 [PMID: 18667441]
  34. Genomics. 2006 Oct;88(4):415-30 [PMID: 16624519]
  35. Nature. 1983 Aug 4-10;304(5925):412-7 [PMID: 6410283]
  36. Genome Res. 2005 Jun;15(6):790-9 [PMID: 15930491]
  37. J Mol Evol. 2004 Oct;59(4):498-506 [PMID: 15638461]
  38. BMC Biol. 2006 Apr 21;4:11 [PMID: 16630334]
  39. Bioinformatics. 2003 Dec 12;19(18):2496-7 [PMID: 14668244]
  40. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18638-43 [PMID: 17121990]
  41. Brief Bioinform. 2004 Jun;5(2):150-63 [PMID: 15260895]
  42. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  43. J Mol Evol. 1993 Jan;36(1):96-9 [PMID: 8433381]
  44. Evolution. 1993 Dec;47(6):1637-1653 [PMID: 28568007]
  45. Genetics. 1983 Oct;105(2):437-60 [PMID: 6628982]
  46. Mol Biol Evol. 1990 Jul;7(4):377-94 [PMID: 1974693]
  47. Genetics. 1987 May;116(1):153-9 [PMID: 3110004]
  48. Mol Biol Evol. 2001 Mar;18(3):279-90 [PMID: 11230529]
  49. J Mol Evol. 1995 Dec;41(6):1152-9 [PMID: 8587111]
  50. Nature. 2005 Oct 20;437(7062):1149-52 [PMID: 16237443]
  51. Monogr Popul Biol. 1977;10:1-246 [PMID: 409931]
  52. Mol Biol Evol. 2005 Mar;22(3):506-19 [PMID: 15525701]
  53. Genetics. 1997 Nov;147(3):1091-106 [PMID: 9383055]
  54. Mol Ecol. 2000 Aug;9(8):1075-88 [PMID: 10964227]
  55. Genetics. 1996 Jul;143(3):1457-65 [PMID: 8807315]
  56. Curr Opin Genet Dev. 2006 Dec;16(6):592-6 [PMID: 17055250]
  57. Insect Mol Biol. 2001 Feb;10(1):33-46 [PMID: 11240635]
  58. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  59. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  60. Evolution. 2008 Aug;62(8):1936-50 [PMID: 18462213]
  61. Genetics. 1997 Mar;145(3):847-55 [PMID: 9055093]
  62. Heredity (Edinb). 2001 Aug;87(Pt 2):153-61 [PMID: 11703505]
  63. Mol Biol Evol. 2005 Feb;22(2):297-307 [PMID: 15483319]
  64. Mol Biol Evol. 2006 Feb;23(2):450-68 [PMID: 16280547]
  65. Mol Phylogenet Evol. 1995 Dec;4(4):395-407 [PMID: 8747296]
  66. Bioinformatics. 2006 Mar 15;22(6):768-70 [PMID: 16410317]

Grants

  1. R01 GM036827/NIGMS NIH HHS
  2. R01 GM36827/NIGMS NIH HHS

MeSH Term

Animals
Cell Nucleus
DNA
Daphnia
Evolution, Molecular
Genetic Variation
Genetics, Population
Genome
Molecular Sequence Data
Phylogeny
Polymorphism, Genetic

Chemicals

DNA

Word Cloud

Created with Highcharts 10.0.0variationDaphniaDnucleotidegenuspulexspeciesnaturalpopulationsDNAgenomenewlocipulicariaintraspecificsaveraged0ratedivergenceUnderstandingsubjectgreatinterestdecadesHowevermanytaxonomicgroupsespeciallyatypicallifehistoryattributesremainunstudiedDrosophilaarthropodpolymorphismdatapresentlyabundantresultrecentreleasecompletesequencewidevarietygenomicresourcessystemquicklybecomingpromisingavenueexpandingknowledgeexaminesixprotein-codingcongenersparticularemphasisclosestextantrelativeLevelssynonymouspi0136slightlylowerpriorestimatesinvertebratesTestsneutralityindicatedsegregatingconformsneutralmodelexpectationsexaminedK/KratiosrevealedstrongpurifyingselectionUsingfullmaximum-likelihoodcoalescent-basedmethodratiorecombinationmutationc/u5255Lastlypopulation-geneticsapproachusedinvestigategeneflowPatternsnuclear

Similar Articles

Cited By