A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data.

Wenhua Hu, Gang Li, Ning Li
Author Information
  1. Wenhua Hu: Bristol-Myers Squibb, Wallingford, CT 06450, U.S.A. wenhua.hu@bms.com

Abstract

In this paper, we develop a Bayesian method for joint analysis of longitudinal measurements and competing risks failure time data. The model allows one to analyze the longitudinal outcome with nonignorable missing data induced by multiple types of events, to analyze survival data with dependent censoring for the key event, and to draw inferences on multiple endpoints simultaneously. Compared with the likelihood approach, the Bayesian method has several advantages. It is computationally more tractable for high-dimensional random effects. It is also convenient to draw inference. Moreover, it provides a means to incorporate prior information that may help to improve estimation accuracy. An illustration is given using a clinical trial data of scleroderma lung disease. The performance of our method is evaluated by simulation studies.

References

  1. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]
  2. Lifetime Data Anal. 2005 Jun;11(2):151-74 [PMID: 15940822]
  3. Biometrics. 2006 Dec;62(4):1037-43 [PMID: 17156277]
  4. Biometrics. 2003 Jun;59(2):221-8 [PMID: 12926706]
  5. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  6. Biometrics. 2004 Dec;60(4):892-9 [PMID: 15606409]
  7. IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41 [PMID: 22499653]
  8. Stat Med. 2003 Apr 15;22(7):1097-111 [PMID: 12652556]
  9. Stat Med. 1992 Oct-Nov;11(14-15):1861-70 [PMID: 1480878]
  10. N Engl J Med. 2006 Jun 22;354(25):2655-66 [PMID: 16790698]
  11. Biometrics. 2008 Sep;64(3):762-771 [PMID: 18162112]
  12. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  13. Biometrics. 2002 Dec;58(4):742-53 [PMID: 12495128]
  14. Biometrics. 1997 Mar;53(1):330-9 [PMID: 9147598]
  15. Stat Med. 2007 Jun 30;26(14):2813-35 [PMID: 17124698]
  16. Biometrics. 1978 Dec;34(4):541-54 [PMID: 373811]

Grants

  1. CA016042/NCI NIH HHS
  2. P01 AT003960-01A1/NCCIH NIH HHS
  3. P01 AT003960/NCCIH NIH HHS
  4. P01AT003960/NCCIH NIH HHS
  5. P30 CA016042/NCI NIH HHS
  6. P30 CA016042-35/NCI NIH HHS

MeSH Term

Algorithms
Bayes Theorem
Follow-Up Studies
Humans
Likelihood Functions
Linear Models
Longitudinal Studies
Lung Diseases, Interstitial
Markov Chains
Models, Statistical
Monte Carlo Method
Proportional Hazards Models
Randomized Controlled Trials as Topic
Risk Assessment
Risk Factors
Time Factors
Treatment Failure
Treatment Outcome

Word Cloud

Created with Highcharts 10.0.0dataBayesianmethodlongitudinaljointanalysismeasurementscompetingrisksfailuretimeanalyzemultipledrawapproachpaperdevelopmodelallowsoneoutcomenonignorablemissinginducedtypeseventssurvivaldependentcensoringkeyeventinferencesendpointssimultaneouslyComparedlikelihoodseveraladvantagescomputationallytractablehigh-dimensionalrandomeffectsalsoconvenientinferenceMoreoverprovidesmeansincorporatepriorinformationmayhelpimproveestimationaccuracyillustrationgivenusingclinicaltrialsclerodermalungdiseaseperformanceevaluatedsimulationstudies

Similar Articles

Cited By