Conformations and coherences in structure determination by ultrafast electron diffraction.

Milo M Lin, Dmitry Shorokhov, Ahmed H Zewail
Author Information
  1. Milo M Lin: Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory for Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA.

Abstract

In this article we consider consequences of spatial coherences and conformations in diffraction of (macro)molecules with different potential energy landscapes. The emphasis is on using this understanding to extract structural and temporal information from diffraction experiments. The theoretical analysis of structural interconversions spans an increased range of complexity, from small hydrocarbons to proteins. For each molecule considered, we construct the potential energy landscape and assess the characteristic conformational states available. For molecules that are quasiharmonic in the vicinity of energy minima, we find that the distinct conformer model is sufficient even at high temperatures. If, however, the energy surface is either locally flat around the minima or the molecule includes many degrees of conformational freedom, a Boltzmann ensemble must be used, in what we define as the pseudoconformer approach, to reproduce the diffraction. For macromolecules with numerous energy minima, the ensemble of hundreds of structures is considered, but we also utilize the concept of the persistence length to provide information on orientational coherence and its use to assess the degree of resonance contribution to diffraction. It is shown that the erosion of the resonant features in diffraction which are characteristic of some quasiperiodic structural motifs can be exploited in experimental studies of conformational interconversions triggered by a laser-induced temperature jump.

References

  1. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14559-64 [PMID: 17726097]
  2. Nature. 2001 May 31;411(6837):539-41 [PMID: 11385553]
  3. Angew Chem Int Ed Engl. 2003 Sep 15;42(35):4183-8; discussion 4188-94 [PMID: 14502731]
  4. J Phys Chem B. 2006 Oct 26;110(42):20765-76 [PMID: 17048885]
  5. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8854-9 [PMID: 15956181]
  6. Acc Chem Res. 2007 Feb;40(2):113-9 [PMID: 17309192]
  7. J Am Chem Soc. 2006 Feb 8;128(5):1523-30 [PMID: 16448122]
  8. Nature. 2001 May 31;411(6837):565-8 [PMID: 11385566]
  9. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):712-6 [PMID: 17215374]
  10. Angew Chem Int Ed Engl. 2008;47(49):9496-9 [PMID: 18988218]
  11. Science. 2005 Jan 28;307(5709):558-63 [PMID: 15637234]
  12. Chem Asian J. 2006 Jul 17;1(1-2):56-63 [PMID: 17441038]
  13. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5021-5 [PMID: 11607189]
  14. J Mol Spectrosc. 2000 Sep;203(1):82-95 [PMID: 10930335]
  15. Biopolymers. 1997 May;41(6):623-34 [PMID: 9108730]
  16. Phys Chem Chem Phys. 2008 Aug 7;10(29):4227-39 [PMID: 18633543]
  17. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7117-22 [PMID: 11404473]
  18. Annu Rev Phys Chem. 2006;57:65-103 [PMID: 16599805]
  19. Science. 2001 Jan 19;291(5503):458-62 [PMID: 11161194]
  20. J Chem Phys. 2006 May 7;124(17):174707 [PMID: 16689590]
  21. Nature. 1980 Oct 23;287(5784):755-8 [PMID: 7432492]
  22. Nature. 1979 Dec 13;282(5740):680-6 [PMID: 514347]
  23. Chemphyschem. 2005 Nov 11;6(11):2228-50 [PMID: 16273578]
  24. J Phys Chem A. 2003 Nov 27;107(47):10199-207 [PMID: 26313528]
  25. Chemphyschem. 2007 Aug 6;8(11):1607-9 [PMID: 17577904]
  26. Nature. 1953 Apr 25;171(4356):737-8 [PMID: 13054692]
  27. Acc Chem Res. 2006 Mar;39(3):216-20 [PMID: 16548510]
  28. Angew Chem Int Ed Engl. 2006 Aug 4;45(31):5154-8 [PMID: 16881036]
  29. Phys Chem Chem Phys. 2008 May 28;10(20):2879-93 [PMID: 18473037]

Grants

  1. R01 GM081520/NIGMS NIH HHS
  2. R01 GM081520-01/NIGMS NIH HHS
  3. R01-GM081520-01/NIGMS NIH HHS

MeSH Term

Butanes
Eicosanoic Acids
Electrons
Molecular Conformation
Phase Transition
Polymers
Protein Structure, Secondary
Rotation
Stereoisomerism
Stilbenes
Time Factors

Chemicals

Butanes
Eicosanoic Acids
Polymers
Stilbenes
butane
arachidic acid

Word Cloud

Created with Highcharts 10.0.0diffractionenergystructuralconformationalminimacoherencesmoleculespotentialinformationinterconversionsmoleculeconsideredassesscharacteristicensemblearticleconsiderconsequencesspatialconformationsmacrodifferentlandscapesemphasisusingunderstandingextracttemporalexperimentstheoreticalanalysisspansincreasedrangecomplexitysmallhydrocarbonsproteinsconstructlandscapestatesavailablequasiharmonicvicinityfinddistinctconformermodelsufficientevenhightemperatureshoweversurfaceeitherlocallyflataroundincludesmanydegreesfreedomBoltzmannmustuseddefinepseudoconformerapproachreproducemacromoleculesnumeroushundredsstructuresalsoutilizeconceptpersistencelengthprovideorientationalcoherenceusedegreeresonancecontributionshownerosionresonantfeaturesquasiperiodicmotifscanexploitedexperimentalstudiestriggeredlaser-inducedtemperaturejumpConformationsstructuredeterminationultrafastelectron

Similar Articles

Cited By