Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1.

Emilie F Fradin, Zhao Zhang, Juan C Juarez Ayala, Christian D M Castroverde, Ross N Nazar, Jane Robb, Chun-Ming Liu, Bart P H J Thomma
Author Information
  1. Emilie F Fradin: Laboratory of Phytopathology, Wageningen University, 6709 PD Wageningen, The Netherlands.

Abstract

Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.

References

  1. Plant Cell. 2001 Feb;13(2):255-72 [PMID: 11226184]
  2. Plant Cell. 2008 Jul;20(7):1948-63 [PMID: 18660430]
  3. Plant Mol Biol. 2000 Apr;42(6):819-32 [PMID: 10890530]
  4. Plant Cell. 2005 Jan;17(1):295-310 [PMID: 15598806]
  5. Mol Plant Microbe Interact. 2006 Jun;19(6):567-76 [PMID: 16776290]
  6. Plant Physiol. 2008 Jun;147(2):503-17 [PMID: 18434605]
  7. EMBO J. 2004 May 19;23(10):2156-65 [PMID: 15131698]
  8. Plant J. 2004 Jul;39(2):264-72 [PMID: 15225290]
  9. Plant J. 2004 Sep;39(5):734-46 [PMID: 15315635]
  10. Plant Physiol. 1998 Jul;117(3):809-20 [PMID: 9662523]
  11. Plant J. 2003 Dec;36(6):905-17 [PMID: 14675454]
  12. Mol Plant Microbe Interact. 2008 Apr;21(4):448-58 [PMID: 18321190]
  13. Sci STKE. 2001 Dec 18;2001(113):re22 [PMID: 11752632]
  14. Plant Cell. 2001 Feb;13(2):273-85 [PMID: 11226185]
  15. Cell. 1996 Feb 9;84(3):451-9 [PMID: 8608599]
  16. Plant Cell. 2000 Jun;12(6):963-77 [PMID: 10852940]
  17. Plant J. 2005 May;42(3):376-91 [PMID: 15842623]
  18. Plant Cell. 2005 Mar;17(3):1000-15 [PMID: 15722474]
  19. Mol Plant Microbe Interact. 2009 Mar;22(3):245-58 [PMID: 19245319]
  20. Science. 1994 Nov 4;266(5186):789-93 [PMID: 7973631]
  21. Plant Cell. 1997 Dec;9(12):2209-24 [PMID: 9437864]
  22. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6511-5 [PMID: 11331751]
  23. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10865-9 [PMID: 12119413]
  24. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11085-9 [PMID: 9380763]
  25. J Exp Bot. 2009;60(2):591-602 [PMID: 19098131]
  26. Plant Cell. 2004 Jun;16(6):1604-15 [PMID: 15155877]
  27. Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):886-90 [PMID: 14715897]
  28. Planta. 2007 Jul;226(2):299-309 [PMID: 17308929]
  29. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12217-22 [PMID: 17626179]
  30. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5850-5 [PMID: 10318973]
  31. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6597-601 [PMID: 11607554]
  32. Plant Cell. 2008 Mar;20(3):697-719 [PMID: 18375657]
  33. Mol Plant Pathol. 2003 May 1;4(3):199-202 [PMID: 20569379]
  34. Plant J. 2007 Apr;50(1):14-28 [PMID: 17346268]
  35. Plant Physiol. 2007 Jul;144(3):1481-94 [PMID: 17478632]
  36. Plant Cell Rep. 1989 Mar;7(8):662-4 [PMID: 24240456]
  37. Mol Plant Pathol. 2006 Mar 1;7(2):71-86 [PMID: 20507429]
  38. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10306-11 [PMID: 9707643]
  39. Plant Cell. 2005 Dec;17(12):3350-61 [PMID: 16284306]
  40. Genetics. 2004 Nov;168(3):1655-63 [PMID: 15579714]
  41. Curr Biol. 2007 Jul 3;17(13):1116-22 [PMID: 17583510]
  42. Plant J. 2002 May;30(4):415-29 [PMID: 12028572]
  43. Plant J. 2002 Sep;31(6):777-86 [PMID: 12220268]
  44. Plant Cell. 2006 Apr;18(4):1067-83 [PMID: 16531490]
  45. Plant Signal Behav. 2008 Oct;3(10):893-6 [PMID: 19704533]
  46. Cell. 1997 Dec 12;91(6):821-32 [PMID: 9413991]
  47. Plant Physiol. 2005 Jun;138(2):1027-36 [PMID: 15923325]
  48. Biotechniques. 2001 Jul;31(1):132-4, 136-40 [PMID: 11464506]
  49. Mol Plant Pathol. 2005 Jul 1;6(4):379-93 [PMID: 20565665]
  50. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  51. Mol Plant Pathol. 2005 Jan 1;6(1):85-97 [PMID: 20565641]
  52. Plant Physiol. 2005 Jun;138(2):611-23 [PMID: 15955925]
  53. Plant Dis. 1997 Sep;81(9):1011-1014 [PMID: 30861951]
  54. Nature. 2007 Jul 26;448(7152):497-500 [PMID: 17625569]
  55. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10493-8 [PMID: 11517316]
  56. Mol Plant Microbe Interact. 2001 Apr;14(4):508-15 [PMID: 11310738]
  57. Annu Rev Biochem. 1998;67:425-79 [PMID: 9759494]

MeSH Term

Gene Silencing
Genotype
Immunity, Innate
Solanum lycopersicum
Membrane Glycoproteins
Plant Diseases
Plant Proteins
Plants, Genetically Modified
Polymorphism, Genetic
Receptors, Cell Surface
Sequence Analysis, DNA
Signal Transduction
Verticillium

Chemicals

Membrane Glycoproteins
Plant Proteins
Receptors, Cell Surface
Ve1 protein, Lycopersicon esculentum

Word Cloud

Created with Highcharts 10.0.0VresistancetomatoVe1wiltproteinsdiseasesdahliaealbo-atrumracestrainssignalingpathogensVerticilliumvascularlocus1Ve2receptor-likeproteinclassmediatedVascularcausedsoil-borneamongdevastatingplantworldwidegenusincludeswidehostrangeAlthoughlongisporuminfectsvarioushostsbelongingCruciferaceaecause200dicotyledonousspeciesincludingeconomicallyimportantcropsresponsibleclonedSolanumlycopersicumknownVecomprisestwocloselylinkedinverselyorientedgenesencodecellsurfacereceptorextracellularleucine-richrepeatdiseaseshowprovides2Usingvirus-inducedgenesilencingcascadedownstreamshownrequireEDS1NDR1additionNRC1ACIFMEK2SERK3/BAK1alsoactpositiveregulatorsconclusionVe1-mediatedpartiallyoverlapsCftypemembersGeneticdissection

Similar Articles

Cited By