Type I restriction endonucleases are true catalytic enzymes.

Piero R Bianco, Cuiling Xu, Min Chi
Author Information
  1. Piero R Bianco: Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14214, USA. pbianco@buffalo.edu

Abstract

Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.

References

  1. J Mol Biol. 1980 Dec 25;144(4):501-19 [PMID: 6265647]
  2. EMBO J. 2000 May 2;19(9):2094-102 [PMID: 10790375]
  3. Nat New Biol. 1972 Nov 8;240(97):42-3 [PMID: 4564500]
  4. J Mol Biol. 1999 Jul 9;290(2):565-79 [PMID: 10390354]
  5. Nucleic Acids Res. 2003 Apr 1;31(7):1888-96 [PMID: 12655005]
  6. CRC Crit Rev Biochem. 1982;13(3):287-323 [PMID: 6293768]
  7. Annu Rev Biochem. 2007;76:23-50 [PMID: 17506634]
  8. Biophys J. 2000 Jul;79(1):479-84 [PMID: 10866973]
  9. EMBO J. 2005 Dec 7;24(23):4188-97 [PMID: 16292342]
  10. Mol Microbiol. 1998 Apr;28(1):25-35 [PMID: 9593294]
  11. J Mol Biol. 1996 Apr 19;257(5):960-9 [PMID: 8632478]
  12. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3099-103 [PMID: 356045]
  13. Nucleic Acids Res. 1998 Oct 1;26(19):4439-45 [PMID: 9742247]
  14. Nature. 1968 Mar 23;217(5134):1110-4 [PMID: 4868368]
  15. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3220-4 [PMID: 4564208]
  16. Biochemistry. 1989 Apr 4;28(7):2863-73 [PMID: 2545238]
  17. Crit Rev Biochem Mol Biol. 2004 Jan-Feb;39(1):1-19 [PMID: 15121719]
  18. EMBO J. 1999 May 4;18(9):2638-47 [PMID: 10228175]
  19. Mol Microbiol. 2006 May;60(4):883-93 [PMID: 16677300]
  20. J Bacteriol. 1997 Mar;179(6):1852-6 [PMID: 9068628]
  21. Microbiol Mol Biol Rev. 2000 Jun;64(2):412-34 [PMID: 10839821]
  22. Nucleic Acids Res. 2007 Jan;35(Database issue):D269-70 [PMID: 17202163]
  23. J Mol Biol. 1996 Dec 13;264(4):722-33 [PMID: 8980681]
  24. J Mol Biol. 1996 Apr 19;257(5):977-91 [PMID: 8632480]
  25. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10570-5 [PMID: 9724744]
  26. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4677-81 [PMID: 2838843]
  27. Nucleic Acids Res. 2005 Mar 23;33(6):1760-6 [PMID: 15788748]
  28. J Biol Chem. 1972 Oct 10;247(19):6183-91 [PMID: 4568607]
  29. J Mol Biol. 2005 Sep 30;352(4):837-59 [PMID: 16126220]
  30. Biochimie. 2002 Nov;84(11):1047-59 [PMID: 12595133]
  31. Mol Microbiol. 2004 Jan;51(1):3-5 [PMID: 14651606]
  32. Nature. 1975 Aug 14;256(5518):556-60 [PMID: 1101070]
  33. Anal Biochem. 1989 Nov 1;182(2):319-26 [PMID: 2610349]
  34. Prog Nucleic Acid Res Mol Biol. 2000;64:1-63 [PMID: 10697406]
  35. Nucleic Acids Res. 2001 Sep 15;29(18):3728-41 [PMID: 11557806]
  36. Biol Chem. 1998 Apr-May;379(4-5):497-503 [PMID: 9628343]
  37. J Mol Biol. 1974 Dec 25;90(4):633-47 [PMID: 4615175]
  38. Mol Microbiol. 2001 Jan;39(2):416-28 [PMID: 11136462]

Grants

  1. GM66831/NIGMS NIH HHS

MeSH Term

Biocatalysis
DNA
Deoxyribonucleases, Type I Site-Specific
Enzyme Stability
Holoenzymes
Nucleosides
Protein Binding
Protein Multimerization
Terminology as Topic

Chemicals

Holoenzymes
Nucleosides
DNA
endodeoxyribonuclease EcoR124I
Deoxyribonucleases, Type I Site-Specific

Word Cloud

Created with Highcharts 10.0.0DNArestrictionenzymesendonucleasestypetargetsequencecatalyticTyperestrictsitesdistantATPenzymeboundrelativemechanismcleavagetrueintriguingmultifunctionalcomplexesrandomlyRestrictionfacilitatedhydrolysis-dependenttranslocationdouble-strandedtowardsstationaryrecognitionFollowingthoughtremainassociatedsitehydrolyzingcopiousamountsresultpast35yearslooselyclassifiedsincefunctionedstoichiometricallyunderstanddetailedanalysisEcoR124IholoenzymedonedemonstratefirsttimestoichiometricinsteadrespectinvolvesformationdimerholoenzymesmonomerfollowingdissociatesintactformbindsubsequentmoleculesThereforelikeIIcounterpartsconclusionimportantimplicationsvivofunctionpreviouslyenigmatic

Similar Articles

Cited By