Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle.

Justus P Beier, Dorothee Klumpp, Markus Rudisile, Roland Dersch, Joachim H Wendorff, Oliver Bleiziffer, Andreas Arkudas, Elias Polykandriotis, Raymund E Horch, Ulrich Kneser
Author Information
  1. Justus P Beier: Department of Plastic and Hand Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany. Justus.beier@uk-erlangen.de

Abstract

BACKGROUND: Tissue engineering of vascularised skeletal muscle is a promising method for the treatment of soft tissue defects in reconstructive surgery. In this study we explored the characteristics of novel collagen and fibrin matrices for skeletal muscle tissue engineering. We analyzed the characteristics of newly developed hybrid collagen-I-fibrin-gels and collagen nanofibers as well as collagen sponges and OPLA-scaffolds. Collagen-fibrin gels were also tested with genipin as stabilizing substitute for aprotinin.
RESULTS: Whereas rapid lysis and contraction of pure collagen I- or fibrin-matrices have been great problems in the past, the latter could be overcome by combining both materials. Significant proliferation of cultivated myoblasts was detected in collagen-I-fibrin matrices and collagen nanofibers. Seeding cells on parallel orientated nanofibers resulted in strongly aligned myoblasts. In contrast, common collagen sponges and OPLA-scaffolds showed less cell proliferation and in collagen sponges an increased apoptosis rate was evident. The application of genipin caused deleterious effects on primary myoblasts.
CONCLUSION: Collagen I-fibrin mixtures as well as collagen nanofibers yield good proliferation rates and myogenic differentiation of primary rat myoblasts in vitro In addition, parallel orientated nanofibers enable the generation of aligned cell layers and therefore represent the most promising step towards successful engineering of skeletal muscle tissue.

References

  1. Artif Organs. 2007 Jan;31(1):4-12 [PMID: 17209955]
  2. Tissue Eng. 2007 Jul;13(7):1431-42 [PMID: 17561804]
  3. J Cell Mol Med. 2004 Oct-Dec;8(4):413-22 [PMID: 15601570]
  4. Eur Cell Mater. 2007 Oct 08;14:56-63 [PMID: 17922410]
  5. J Biomed Mater Res. 1998 Dec 15;42(4):560-7 [PMID: 9827680]
  6. Stem Cells. 2006 Nov;24(11):2391-7 [PMID: 17071856]
  7. Am J Physiol. 1998 Dec;275(6):C1438-48 [PMID: 9843704]
  8. Biomaterials. 2006 Feb;27(5):724-34 [PMID: 16111744]
  9. Cell Transplant. 2008;16(10):1071 [PMID: 18360952]
  10. J Biomater Sci Polym Ed. 2008;19(10):1279-93 [PMID: 18854122]
  11. Muscle Nerve. 2008 Apr;37(4):438-47 [PMID: 18236465]
  12. Tissue Eng. 1999 Dec;5(6):525-32 [PMID: 10611544]
  13. Biomaterials. 1997 Dec;18(24):1573-83 [PMID: 9613804]
  14. Plast Reconstr Surg. 2006 Oct;118(5):1113-1121 [PMID: 17016175]
  15. BMC Biotechnol. 2008 Apr 11;8:39 [PMID: 18405347]
  16. Exp Cell Res. 1992 Sep;202(1):1-8 [PMID: 1511725]
  17. J Cell Mol Med. 2006 Jul-Sep;10(3):716-26 [PMID: 16989731]
  18. BMC Biotechnol. 2008 Apr 02;8:35 [PMID: 18384691]
  19. J Biomed Mater Res A. 2008 Nov;87(2):308-20 [PMID: 18181104]
  20. J Cell Mol Med. 2010 Jan;14(1-2):267-74 [PMID: 18505475]
  21. J Biomed Mater Res B Appl Biomater. 2004 Oct 15;71(1):181-7 [PMID: 15368243]
  22. BMC Biotechnol. 2007 Dec 10;7:88 [PMID: 18070345]
  23. In Vitro Cell Dev Biol. 1988 Mar;24(3):166-74 [PMID: 3350785]
  24. Biomed Tech (Berl). 2004 Sep;49(9):242-7 [PMID: 15493132]
  25. N Engl J Med. 2006 Jan 26;354(4):353-65 [PMID: 16436767]
  26. Cell Transplant. 1997 Mar-Apr;6(2):109-18 [PMID: 9142442]
  27. J Appl Physiol (1985). 2005 Feb;98(2):706-13 [PMID: 15475606]
  28. Biomaterials. 2005 Aug;26(22):4606-15 [PMID: 15722130]
  29. Ophthalmic Plast Reconstr Surg. 2002 Sep;18(5):342-8 [PMID: 12352820]
  30. J Cell Mol Med. 2005 Oct-Dec;9(4):883-92 [PMID: 16364197]
  31. J Cell Mol Med. 2008 Sep-Oct;12(5A):1640-8 [PMID: 18194451]
  32. Transfusion. 2000 Mar;40(3):302-5 [PMID: 10738030]
  33. Artif Organs. 2006 Oct;30(10):785-92 [PMID: 17026578]
  34. Ann N Y Acad Sci. 2001 Nov;944:429-42 [PMID: 11797691]
  35. Cell Transplant. 2004;13(1):45-53 [PMID: 15040604]

MeSH Term

Animals
Apoptosis
Cell Proliferation
Cell Survival
Cells, Cultured
Collagen Type I
Fibrin
Gels
Microscopy, Electron, Scanning
Microscopy, Phase-Contrast
Muscle, Skeletal
Myoblasts
Nanostructures
Rats
Rats, Inbred Lew
Tissue Engineering
Tissue Scaffolds

Chemicals

Collagen Type I
Gels
Fibrin

Word Cloud

Created with Highcharts 10.0.0collagennanofibersengineeringskeletalmuscletissuemyoblastsmatricesspongesproliferationpromisingcharacteristicswellOPLA-scaffoldsgenipinparallelorientatedalignedcellprimaryCollagenBACKGROUND:Tissuevascularisedmethodtreatmentsoftdefectsreconstructivesurgerystudyexplorednovelfibrinanalyzednewlydevelopedhybridcollagen-I-fibrin-gelsCollagen-fibringelsalsotestedstabilizingsubstituteaprotininRESULTS:WhereasrapidlysiscontractionpureI-fibrin-matricesgreatproblemspastlatterovercomecombiningmaterialsSignificantcultivateddetectedcollagen-I-fibrinSeedingcellsresultedstronglycontrastcommonshowedlessincreasedapoptosisrateevidentapplicationcauseddeleteriouseffectsCONCLUSION:I-fibrinmixturesyieldgoodratesmyogenicdifferentiationratvitroadditionenablegenerationlayersthereforerepresentsteptowardssuccessfulspongenano:newperspectives

Similar Articles

Cited By