The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.

Md Asadulghani, Yoshitoshi Ogura, Tadasuke Ooka, Takehiko Itoh, Akira Sawaguchi, Atsushi Iguchi, Keisuke Nakayama, Tetsuya Hayashi
Author Information
  1. Md Asadulghani: Division of Bioenvironmental Sciences, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.

Abstract

Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) possesses 18 prophages (Sp1-Sp18) that encode numerous genes related to O157 virulence, including those for two potent cytotoxins, Shiga toxins (Stx) 1 and 2. However, most of these prophages appeared to contain multiple genetic defects. To understand whether these defective prophages have the potential to act as mobile genetic elements to spread virulence determinants, we looked closely at the Sp1-Sp18 sequences, defined the genetic defects of each Sp, and then systematically analyzed all Sps for their biological activities. We show that many of the defective prophages, including the Stx1 phage, are inducible and released from O157 cells as particulate DNA. In fact, some prophages can even be transferred to other E. coli strains. We also show that new Stx1 phages are generated by recombination between the Stx1 and Stx2 phage genomes. The results indicate that these defective prophages are not simply genetic remnants generated in the course of O157 evolution, but rather genetic elements with a high potential for disseminating virulence-related genes and other genetic traits to other bacteria. We speculate that recombination and various other types of inter-prophage interactions in the O157 prophage pool potentiate such activities. Our data provide new insights into the potential activities of the defective prophages embedded in bacterial genomes and lead to the formulation of a novel concept of inter-prophage interactions in defective prophage communities.

References

  1. Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents [PMID: 12794192]
  2. Lancet. 1996 Sep 21;348(9030):831-2 [PMID: 8814014]
  3. Science. 1995 Aug 4;269(5224):650-6 [PMID: 7624793]
  4. Brief Bioinform. 2004 Jun;5(2):150-63 [PMID: 15260895]
  5. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  6. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  7. Mol Microbiol. 2000 Jun;36(5):1148-55 [PMID: 10844698]
  8. Mol Microbiol. 2004 Jul;53(1):9-18 [PMID: 15225299]
  9. Mol Microbiol. 2002 Apr;44(1):89-105 [PMID: 11967071]
  10. J Mol Biol. 2006 Apr 7;357(4):1154-66 [PMID: 16476446]
  11. Curr Opin Microbiol. 2005 Aug;8(4):459-65 [PMID: 15979389]
  12. Infect Immun. 2002 Aug;70(8):3985-93 [PMID: 12117903]
  13. Virology. 2004 Apr 25;322(1):82-92 [PMID: 15063119]
  14. Curr Microbiol. 2007 Jan;54(1):14-9 [PMID: 17171471]
  15. EMBO Rep. 2003 Jan;4(1):37-41 [PMID: 12524518]
  16. Curr Top Microbiol Immunol. 1977;78:201-37 [PMID: 340149]
  17. Clin Microbiol Rev. 1998 Jul;11(3):450-79 [PMID: 9665978]
  18. EMBO Rep. 2001 May;2(5):376-81 [PMID: 11375927]
  19. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5310-1 [PMID: 15811940]
  20. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17043-8 [PMID: 12481030]
  21. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4470-5 [PMID: 15728384]
  22. Curr Biol. 2005 Sep 6;15(17):R658-60 [PMID: 16139195]
  23. Mol Microbiol. 1998 Dec;30(5):1041-50 [PMID: 9988480]
  24. DNA Res. 2001 Feb 28;8(1):11-22 [PMID: 11258796]
  25. Res Microbiol. 2003 May;154(4):237-43 [PMID: 12798227]
  26. Mol Gen Genet. 1978 Nov 16;167(1):83-93 [PMID: 368588]
  27. J Mol Biol. 2002 Dec 6;324(4):791-805 [PMID: 12460578]
  28. J Bacteriol. 2005 Feb;187(4):1485-92 [PMID: 15687213]
  29. Science. 1975 Nov 14;190(4215):624-32 [PMID: 1103291]
  30. Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents [PMID: 15353570]
  31. Genetics. 2001 May;158(1):41-64 [PMID: 11333217]
  32. J Bacteriol. 2006 Nov;188(21):7426-39 [PMID: 16936024]
  33. Res Microbiol. 2001 Oct;152(8):687-95 [PMID: 11686382]
  34. J Microbiol. 2006 Oct;44(5):530-6 [PMID: 17082747]
  35. Virology. 2006 Apr 25;348(1):133-40 [PMID: 16457867]
  36. Bioinformatics. 2003 Nov 22;19(17):2323-4 [PMID: 14630666]
  37. J Bacteriol. 1951 Jun;61(6):675-88 [PMID: 14850426]
  38. Microbiol Rev. 1993 Sep;57(3):683-702 [PMID: 8246844]
  39. Mol Microbiol. 2006 Dec;62(5):1228-38 [PMID: 17042786]
  40. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4465-9 [PMID: 15728734]
  41. Trends Microbiol. 2001 Oct;9(10):481-5 [PMID: 11597449]
  42. Microbiology (Reading). 2004 Sep;150(Pt 9):2959-2971 [PMID: 15347754]
  43. J Biol Chem. 1990 Aug 5;265(22):13297-307 [PMID: 2165499]
  44. DNA Res. 2006 Feb 28;13(1):3-14 [PMID: 16766508]
  45. Mol Microbiol. 2003 Jul;49(2):277-300 [PMID: 12886937]
  46. Cell Mol Life Sci. 2000 Jan 20;57(1):128-48 [PMID: 10949585]
  47. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  48. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14941-6 [PMID: 16990433]

MeSH Term

Chloramphenicol Resistance
Computer Simulation
Escherichia coli O157
Gene Transfer, Horizontal
Genome, Bacterial
Interspersed Repetitive Sequences
Oligonucleotide Array Sequence Analysis
Polymerase Chain Reaction
Prophages
Recombination, Genetic
Sequence Alignment
Shiga Toxin 1
Shiga Toxin 2
Virion
Virulence
Virulence Factors

Chemicals

Shiga Toxin 1
Shiga Toxin 2
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0prophagesgeneticO157defectivebacterialgenomesgenescolivirulencepotentialactivitiesStx1interactionsprophagehorizontaltransferbacteriaevolutionfactmanysequencedcontainmultipleEscherichiaSp1-Sp18includingdefectselementsdeterminantsshowphagenewgeneratedrecombinationinter-prophagepoolpotentiateBacteriophagesmajorfactorspromotinggeneHGTrolesdynamicgenomeincreasinglyhighlightedcarryingwiderangeEnterohemorrhagicstrikingcasestrainSakaipossesses18encodenumerousrelatedtwopotentcytotoxinsShigatoxinsStx12HoweverappearedunderstandwhetheractmobilespreadlookedcloselysequencesdefinedSpsystematicallyanalyzedSpsbiologicalinduciblereleasedcellsparticulateDNAcaneventransferredEstrainsalsophagesStx2resultsindicatesimplyremnantscourseratherhighdisseminatingvirulence-relatedtraitsspeculatevarioustypesdataprovideinsightsembeddedleadformulationnovelconceptcommunitiesO157:prophage-prophage

Similar Articles

Cited By