Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus.

Susan J Allee, Michael R Markham, Philip K Stoddard
Author Information
  1. Susan J Allee: Department of Biological Sciences, Florida International University, Miami, FL 33199, USA. allee.sj@gmail.com

Abstract

Sex steroids were initially defined by their actions shaping sexually dimorphic behavioral patterns. More recently scientists have begun exploring the role of steroids in determining sex differences in behavioral plasticity. We investigated the role of androgens in potentiating circadian, pharmacological, and socially-induced plasticity in the amplitude and duration of electric organ discharges (EODs) of female gymnotiform fish. We first challenged female fish with injections of serotonin (5-HT) and adrenocorticotropic hormone (ACTH), and with social encounters with female and male conspecifics to characterize females' pre-implant responses to each treatment. Each individual was then implanted with a pellet containing dihydrotestosterone (DHT) concentrations of 0.0, 0.03, 0.1, 0.3, or 1.0 mg 10 g(-1) body weight. We then repeated all challenges and compared each female's pre- and post-implant responses. The highest implant dose enhanced EOD duration modulations in response to all challenge types, responses to male challenge were also greater at the second highest dose, and responses to ACTH challenge were enhanced in females receiving all but the smallest dose (and blank) implants. Alternatively, amplitude modulations were enhanced only during female challenges and only when females received the highest DHT dose. Our results highlight the differential regulation of EOD duration and amplitude, and suggest that DHT enhanced the intrinsic plasticity of the electrogenic cells that produce the EOD rather than modifying behavioral phenotypes. The relative failure of DHT to enhance EOD amplitude plasticity also implies that factors other than androgens are involved in regulating/promoting male-typical EOD circadian rhythms and waveform modulations displayed in social contexts.

References

  1. Brain Res Brain Res Rev. 1996 Jun;22(1):1-26 [PMID: 8871783]
  2. Horm Behav. 2001 Nov;40(3):434-42 [PMID: 11673917]
  3. Physiol Behav. 2007 Feb 28;90(2-3):525-36 [PMID: 17178133]
  4. Steroids. 1989 Aug;54(2):159-68 [PMID: 2588295]
  5. Gen Comp Endocrinol. 1997 Oct;108(1):1-24 [PMID: 9378263]
  6. Horm Behav. 2008 Mar;53(3):481-8 [PMID: 18206154]
  7. Dev Neurobiol. 2007 Oct;67(12):1589-97 [PMID: 17562532]
  8. J Comp Physiol A. 1998 Dec;183(6):759-68 [PMID: 9861708]
  9. Brain Behav Evol. 1990;35(6):350-67 [PMID: 2245315]
  10. Science. 1983 May 27;220(4600):971-4 [PMID: 6844924]
  11. Gen Comp Endocrinol. 2006 Jul;147(3):323-8 [PMID: 16563393]
  12. Neuroendocrinology. 2000 Apr;71(4):252-61 [PMID: 10773745]
  13. Gen Comp Endocrinol. 1994 Sep;95(3):399-408 [PMID: 7821777]
  14. Scand J Psychol. 2003 Jul;44(3):213-20 [PMID: 12914584]
  15. Dev Neurobiol. 2007 Apr;67(5):535-49 [PMID: 17443807]
  16. Brain Behav Evol. 1993;42(4-5):242-51 [PMID: 8252376]
  17. J Neurosci. 1997 Apr 15;17(8):2869-75 [PMID: 9092608]
  18. Horm Behav. 1996 Dec;30(4):627-61 [PMID: 9047287]
  19. Horm Behav. 1998 Dec;34(3):303-19 [PMID: 9878279]
  20. Proc Biol Sci. 2004 Dec 7;271(1556):2453-7 [PMID: 15590595]
  21. J Biol Chem. 1999 Feb 26;274(9):5674-80 [PMID: 10026186]
  22. J Neurosci. 1995 May;15(5 Pt 2):4023-32 [PMID: 7751963]
  23. Reproduction. 2007 Feb;133(2):331-59 [PMID: 17307903]
  24. J Steroid Biochem Mol Biol. 2001 Dec;79(1-5):305-14 [PMID: 11850237]
  25. J Comp Physiol A. 1997 Aug;181(2):111-9 [PMID: 9251254]
  26. Horm Behav. 2005 May;47(5):523-31 [PMID: 15811353]
  27. Horm Behav. 2008 Nov;54(5):717-25 [PMID: 18760279]
  28. J Neurosci. 2005 Sep 21;25(38):8746-54 [PMID: 16177044]
  29. J Comp Physiol A. 1986 Apr;158(3):301-10 [PMID: 3723438]
  30. Horm Behav. 1996 Dec;30(4):600-10 [PMID: 9047284]
  31. Brain Behav Evol. 2001;58(1):28-37 [PMID: 11799276]
  32. Gen Comp Endocrinol. 1987 May;66(2):224-32 [PMID: 3582954]
  33. Biol Reprod. 1999 Oct;61(4):1152-61 [PMID: 10491657]
  34. Endocrinology. 1988 Aug;123(2):1162-71 [PMID: 3396501]
  35. Front Neuroendocrinol. 2002 Jan;23(1):41-100 [PMID: 11906203]
  36. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jul;188(6):469-77 [PMID: 12122465]
  37. Annu Rev Neurosci. 1988;11:225-51 [PMID: 3284441]
  38. Front Neuroendocrinol. 1998 Oct;19(4):323-62 [PMID: 9799588]
  39. Horm Behav. 1998 Aug;34(1):30-8 [PMID: 9735226]
  40. J Neurobiol. 1992 Sep;23(7):920-32 [PMID: 1431851]
  41. Horm Behav. 2009 Feb;55(2):306-13 [PMID: 19063894]
  42. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):613-24 [PMID: 16437223]
  43. Comp Biochem Physiol B Biochem Mol Biol. 2002 May;132(1):203-15 [PMID: 11997222]
  44. J Neurosci. 1995 Mar;15(3 Pt 1):1879-90 [PMID: 7534341]
  45. J Neurosci. 1991 Aug;11(8):2349-61 [PMID: 1869919]
  46. Brain Behav Evol. 1980;17(1):48-66 [PMID: 7370724]
  47. Horm Behav. 2000 Nov;38(3):177-86 [PMID: 11038292]
  48. Endocrinology. 1999 Apr;140(4):1602-11 [PMID: 10098494]
  49. J Exp Biol. 2003 Apr;206(Pt 8):1353-62 [PMID: 12624170]
  50. Gen Comp Endocrinol. 2000 Feb;117(2):200-6 [PMID: 10642442]
  51. J Comp Physiol A. 1987 Mar;160(3):385-94 [PMID: 3572854]
  52. Physiol Behav. 2004 Nov 15;83(2):329-46 [PMID: 15488549]
  53. J Comp Physiol A. 1991 Oct;169(4):493-9 [PMID: 1779420]
  54. Horm Behav. 1985 Dec;19(4):469-98 [PMID: 3910535]
  55. J Comp Physiol A. 1986 Oct;159(4):535-44 [PMID: 3491207]
  56. J Biol Chem. 1999 Sep 3;274(36):25205-9 [PMID: 10464240]
  57. Biochem Biophys Res Commun. 1999 Jan 19;254(2):378-83 [PMID: 9918846]
  58. Proc Biol Sci. 2003 Sep 7;270(1526):1779-84 [PMID: 12964979]
  59. Physiol Behav. 2007 Jan 30;90(1):11-20 [PMID: 16996093]
  60. Science. 1982 Aug 13;217(4560):635-7 [PMID: 17817533]
  61. J Comp Physiol A. 2001 Feb;187(1):45-52 [PMID: 11318377]
  62. Horm Behav. 2005 Nov;48(4):430-9 [PMID: 16045912]
  63. J Neurosci. 2006 Feb 1;26(5):1448-56 [PMID: 16452668]
  64. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12421-6 [PMID: 12218180]
  65. Nat Neurosci. 2004 Oct;7(10):1034-9 [PMID: 15452574]

Grants

  1. S06 GM008205/NIGMS NIH HHS
  2. K01 MH064550-05/NIMH NIH HHS
  3. S06 GM008205-210038/NIGMS NIH HHS
  4. S06 GM008205-200038/NIGMS NIH HHS
  5. S06 GM008205-190038/NIGMS NIH HHS
  6. S06 GM008205-220038/NIGMS NIH HHS
  7. K01 MH064550/NIMH NIH HHS
  8. GM08205/NIGMS NIH HHS
  9. K01MH064550/NIMH NIH HHS

MeSH Term

Adaptation, Physiological
Adrenocorticotropic Hormone
Analysis of Variance
Animal Communication
Animals
Circadian Rhythm
Dihydrotestosterone
Electric Organ
Female
Gymnotiformes
Likelihood Functions
Male
Random Allocation
Regression Analysis
Serotonin
Sex Characteristics
Social Behavior

Chemicals

Dihydrotestosterone
Serotonin
Adrenocorticotropic Hormone

Word Cloud

Created with Highcharts 10.0.00plasticityfemaleEODamplituderesponsesDHTdoseenhancedbehavioraldurationhighestmodulationschallengesteroidsroleandrogenscircadianelectricfishACTHsocialmale1challengesalsofemalesenhanceSexinitiallydefinedactionsshapingsexuallydimorphicpatternsrecentlyscientistsbegunexploringdeterminingsexdifferencesinvestigatedpotentiatingpharmacologicalsocially-inducedorgandischargesEODsgymnotiformfirstchallengedinjectionsserotonin5-HTadrenocorticotropichormoneencountersconspecificscharacterizefemales'pre-implanttreatmentindividualimplantedpelletcontainingdihydrotestosteroneconcentrations033mg10g-1bodyweightrepeatedcomparedfemale'spre-post-implantimplantresponsetypesgreatersecondreceivingsmallestblankimplantsAlternativelyreceivedresultshighlightdifferentialregulationsuggestintrinsicelectrogeniccellsproducerathermodifyingphenotypesrelativefailureimpliesfactorsinvolvedregulating/promotingmale-typicalrhythmswaveformdisplayedcontextsAndrogenscommunicationsignalknifefishBrachyhypopomuspinnicaudatus

Similar Articles

Cited By