Survey of Chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum.

Ana Alexandre, Clarisse Brígido, Marta Laranjo, Sérgio Rodrigues, Solange Oliveira
Author Information
  1. Ana Alexandre: Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias Mediterrânicas (I.C.A.M.), Universidade de Evora, Evora, Portugal.

Abstract

Several Mesorhizobium species are able to induce effective nodules in chickpea, one of the most important legumes worldwide. Our aims were to examine the biogeography of chickpea rhizobia, to search for a predominant species, and to identify the most efficient microsymbiont, considering Portugal as a case study. One hundred and ten isolates were obtained from continental Portugal and Madeira Island. The 16S ribosomal RNA gene phylogeny revealed that isolates are highly diverse, grouping with most Mesorhizobium type strains, in four main clusters (A-D). Interestingly, only 33% of the isolates grouped with Mesorhizobium ciceri (cluster B) or Mesorhizobium mediterraneum (cluster D), the formerly described specific chickpea microsymbionts. Most isolates belong to cluster A, showing higher sequence similarity with Mesorhizobium huakuii and Mesorhizobium amorphae. The association found between the province of origin and species cluster of the isolates suggests biogeography patterns: most isolates from the north, center, and south belong to clusters B, A, and D, respectively. Most of the highly efficient isolates (symbiotic effectiveness >75%) belong to cluster B. A correlation was found between species cluster and origin soil pH of the isolates, suggesting that pH is a key environmental factor, which influences the species geographic distribution. To our knowledge, this is one of the few surveys on chickpea rhizobia and the first systematic assessment of indigenous rhizobia in Portugal.

References

  1. Int J Syst Bacteriol. 1995 Jan;45(1):153-9 [PMID: 7857795]
  2. Microb Ecol. 2008 Apr;55(3):415-24 [PMID: 17690836]
  3. Lett Appl Microbiol. 2007 Apr;44(4):412-8 [PMID: 17397480]
  4. Appl Environ Microbiol. 1996 Nov;62(11):4202-5 [PMID: 16535447]
  5. Syst Appl Microbiol. 2007 Dec;30(8):615-23 [PMID: 17720348]
  6. FEMS Microbiol Ecol. 2008 Nov;66(2):391-400 [PMID: 18795953]
  7. J Appl Microbiol. 2002;92(6):1043-50 [PMID: 12010544]
  8. Int J Syst Bacteriol. 1995 Oct;45(4):640-8 [PMID: 7547282]
  9. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  10. Syst Appl Microbiol. 2003 Nov;26(4):611-23 [PMID: 14666990]
  11. Syst Appl Microbiol. 2006 Jun;29(4):315-32 [PMID: 16442259]
  12. Int J Syst Bacteriol. 1999 Jan;49 Pt 1:51-65 [PMID: 10028247]
  13. FEMS Microbiol Ecol. 2004 Apr 1;48(1):101-7 [PMID: 19712435]
  14. J Bacteriol. 1991 Apr;173(7):2271-7 [PMID: 2007551]
  15. Microb Ecol. 2006 Jan;51(1):128-36 [PMID: 16389465]
  16. Curr Microbiol. 2006 Jul;53(1):1-7 [PMID: 16775779]
  17. Lett Appl Microbiol. 2007 Feb;44(2):168-74 [PMID: 17257256]
  18. Can J Microbiol. 1994 May;40(5):345-54 [PMID: 7915190]
  19. Int J Syst Bacteriol. 1995 Jul;45(3):595-9 [PMID: 8590690]
  20. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 [PMID: 16407148]
  21. J Appl Microbiol. 2002;93(4):531-40 [PMID: 12234335]
  22. Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents [PMID: 10585971]
  23. Environ Microbiol. 1999 Oct;1(5):401-8 [PMID: 11207759]
  24. FEMS Microbiol Rev. 2005 Apr;29(2):147-67 [PMID: 15808739]
  25. Syst Appl Microbiol. 2007 Jul;30(5):343-54 [PMID: 17451899]
  26. J Bacteriol. 2006 Aug;188(15):5570-7 [PMID: 16855247]
  27. Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201 [PMID: 10704479]
  28. Can J Microbiol. 2007 Mar;53(3):427-34 [PMID: 17538653]
  29. Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2839-49 [PMID: 19060069]
  30. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  31. Int J Syst Bacteriol. 1994 Jul;44(3):511-22 [PMID: 7520739]
  32. J Appl Microbiol. 2001 Apr;90(4):662-7 [PMID: 11309081]
  33. Int J Syst Evol Microbiol. 2007 Mar;57(Pt 3):489-503 [PMID: 17329774]
  34. Curr Opin Plant Biol. 1999 Aug;2(4):305-11 [PMID: 10458995]

MeSH Term

Biodiversity
Cicer
Cluster Analysis
DNA, Bacterial
Geography
Phylogeny
Plasmids
Portugal
RNA, Ribosomal, 16S
Rhizobiaceae
Sequence Analysis, DNA
Soil Microbiology
Symbiosis

Chemicals

DNA, Bacterial
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0MesorhizobiumisolatesspeciesclusterchickpeaPortugalrhizobiaBbelongonebiogeographyefficienthighlyclusterscicerimediterraneumDfoundoriginpHSeveralableinduceeffectivenodulesimportantlegumesworldwideaimsexaminesearchpredominantidentifymicrosymbiontconsideringcasestudyOnehundredtenobtainedcontinentalMadeiraIsland16SribosomalRNAgenephylogenyrevealeddiversegroupingtypestrainsfourmainA-DInterestingly33%groupedformerlydescribedspecificmicrosymbiontsshowinghighersequencesimilarityhuakuiiamorphaeassociationprovincesuggestspatterns:northcentersouthrespectivelysymbioticeffectiveness>75%correlationsoilsuggestingkeyenvironmentalfactorinfluencesgeographicdistributionknowledgesurveysfirstsystematicassessmentindigenousSurveyChickpeaRhizobiadiversityrevealspredominancedistinct

Similar Articles

Cited By