Synthetic gene networks that count.

Ari E Friedland, Timothy K Lu, Xiao Wang, David Shi, George Church, James J Collins
Author Information
  1. Ari E Friedland: Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.

Abstract

Synthetic gene networks can be constructed to emulate digital circuits and devices, giving one the ability to program and design cells with some of the principles of modern computing, such as counting. A cellular counter would enable complex synthetic programming and a variety of biotechnology applications. Here, we report two complementary synthetic genetic counters in Escherichia coli that can count up to three induction events: the first, a riboregulated transcriptional cascade, and the second, a recombinase-based cascade of memory units. These modular devices permit counting of varied user-defined inputs over a range of frequencies and can be expanded to count higher numbers.

References

  1. Nat Biotechnol. 2004 Jul;22(7):841-7 [PMID: 15208640]
  2. Biotechnol Bioeng. 2006 May 5;94(1):1-4 [PMID: 16534780]
  3. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34 [PMID: 19255432]
  4. Nature. 2005 Nov 24;438(7067):441-2 [PMID: 16306980]
  5. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  6. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8414-9 [PMID: 15159530]
  7. Nature. 2005 May 5;435(7038):118-22 [PMID: 15875027]
  8. Nat Biotechnol. 2007 Jul;25(7):795-801 [PMID: 17515909]
  9. Science. 1997 Feb 14;275(5302):986-90 [PMID: 9020083]
  10. Science. 2005 Mar 25;307(5717):1965-9 [PMID: 15790857]
  11. Appl Environ Microbiol. 1998 Jun;64(6):2240-6 [PMID: 9603842]
  12. Nat Biotechnol. 1998 Jul;16(7):657-62 [PMID: 9661200]
  13. Nature. 2008 Nov 27;456(7221):516-9 [PMID: 18971928]
  14. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16587-91 [PMID: 12451174]
  15. Nat Biotechnol. 2004 Jul;22(7):867-70 [PMID: 15184906]
  16. Genes Dev. 1999 Aug 1;13(15):1960-9 [PMID: 10444594]
  17. Nat Protoc. 2006;1(3):1637-52 [PMID: 17406455]
  18. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  19. Nat Biotechnol. 2005 Mar;23(3):337-43 [PMID: 15723047]
  20. Cell. 2007 Jul 27;130(2):363-72 [PMID: 17662949]
  21. J Mol Biol. 2004 Jan 16;335(3):667-78 [PMID: 14687564]
  22. Mol Cell Biol. 1999 Jan;19(1):31-45 [PMID: 9858529]
  23. Nature. 2005 Apr 28;434(7037):1130-4 [PMID: 15858574]
  24. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4185-90 [PMID: 11904359]
  25. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  26. Sci Am. 2006 Jun;294(6):44-51 [PMID: 16711359]
  27. Nature. 2006 Feb 16;439(7078):856-60 [PMID: 16482159]
  28. Nat Chem Biol. 2005 Aug;1(3):159-66 [PMID: 16408021]

Grants

  1. DP1 OD003644/NIH HHS
  2. DP1 OD003644-01/NIH HHS
  3. /Howard Hughes Medical Institute

MeSH Term

Arabinose
DNA, Bacterial
DNA-Directed RNA Polymerases
Escherichia coli K12
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genetic Engineering
Green Fluorescent Proteins
Models, Genetic
Plasmids
Promoter Regions, Genetic
Protein Biosynthesis
RNA, Bacterial
Recombinases
Regulatory Elements, Transcriptional
Transcription, Genetic
Viral Proteins

Chemicals

DNA, Bacterial
RNA, Bacterial
Recombinases
Viral Proteins
Green Fluorescent Proteins
Arabinose
bacteriophage T7 RNA polymerase
DNA-Directed RNA Polymerases

Word Cloud

Created with Highcharts 10.0.0cancountSyntheticgenenetworksdevicescountingsyntheticcascadeconstructedemulatedigitalcircuitsgivingoneabilityprogramdesigncellsprinciplesmoderncomputingcellularcounterenablecomplexprogrammingvarietybiotechnologyapplicationsreporttwocomplementarygeneticcountersEscherichiacolithreeinductionevents:firstriboregulatedtranscriptionalsecondrecombinase-basedmemoryunitsmodularpermitvarieduser-definedinputsrangefrequenciesexpandedhighernumbers

Similar Articles

Cited By