Modeling life-span growth curves of cognition using longitudinal data with multiple samples and changing scales of measurement.

John J McArdle, Kevin J Grimm, Fumiaki Hamagami, Ryan P Bowles, William Meredith
Author Information
  1. John J McArdle: Department of Psychology, University of Southern California, 3620 South McClintock Avenue, SGM 501, Los Angeles, CA 90089-1061, USA. jmcardle@usc.edu

Abstract

The authors use multiple-sample longitudinal data from different test batteries to examine propositions about changes in constructs over the life span. The data come from 3 classic studies on intellectual abilities in which, in combination, 441 persons were repeatedly measured as many as 16 times over 70 years. They measured cognitive constructs of vocabulary and memory using 8 age-appropriate intelligence test batteries and explore possible linkage of these scales using item response theory (IRT). They simultaneously estimated the parameters of both IRT and latent curve models based on a joint model likelihood approach (i.e., NLMIXED and WINBUGS). They included group differences in the model to examine potential interindividual differences in levels and change. The resulting longitudinal invariant Rasch test analyses lead to a few new methodological suggestions for dealing with repeated constructs based on changing measurements in developmental studies.

References

  1. Child Dev. 1956 Mar;27(1):45-74 [PMID: 13284940]
  2. Child Dev. 1954 Dec;25(4):281-6 [PMID: 14352363]
  3. Multivariate Behav Res. 1994 Jan 1;29(1):63-113 [PMID: 26771554]
  4. Exp Aging Res. 1992 Autumn-Winter;18(3-4):117-44 [PMID: 1459160]
  5. Child Dev. 1953 Jun;24(2):145-52 [PMID: 13141335]
  6. Dev Psychol. 1999 Jul;35(4):986-1000 [PMID: 10442867]
  7. Behav Genet. 1986 Jan;16(1):163-200 [PMID: 3707483]
  8. Exp Aging Res. 1992 Autumn-Winter;18(3-4):145-66 [PMID: 1459161]
  9. Psychol Methods. 2003 Jun;8(2):185-205 [PMID: 12924814]
  10. Psychol Methods. 2000 Mar;5(1):23-43 [PMID: 10937321]
  11. Dev Psychol. 2002 Jan;38(1):115-42 [PMID: 11806695]
  12. J Appl Meas. 2002;3(3):325-59 [PMID: 12147916]
  13. J Appl Meas. 2003;4(2):153-63 [PMID: 12748407]
  14. Psychol Aging. 2000 Jun;15(2):351-360 [PMID: 10879588]
  15. Behav Res Methods. 2005 May;37(2):202-18 [PMID: 16171193]
  16. Behav Res Methods Instrum Comput. 2003 Nov;35(4):537-49 [PMID: 14748498]

Grants

  1. AG07137/NIA NIH HHS
  2. R37 AG007137/NIA NIH HHS
  3. T32 AG020500/NIA NIH HHS
  4. R01 AG007137/NIA NIH HHS
  5. R01 AG007137-13/NIA NIH HHS
  6. AG04704/NIA NIH HHS
  7. T32 AG20500-01/NIA NIH HHS
  8. AG02695/NIA NIH HHS

MeSH Term

Adolescent
Adult
Age Factors
Aged
Aging
Biometry
Child
Child, Preschool
Cognition
Female
Humans
Individuality
Intelligence Tests
Longitudinal Studies
Male
Markov Chains
Memory
Middle Aged
Models, Statistical
Psychometrics
Sex Factors
Vocabulary

Word Cloud

Created with Highcharts 10.0.0longitudinaldatatestconstructsusingbatteriesexaminestudiesmeasuredscalesIRTbasedmodeldifferenceschangingauthorsusemultiple-sampledifferentpropositionschangeslifespancome3classicintellectualabilitiescombination441personsrepeatedlymany16times70yearscognitivevocabularymemory8age-appropriateintelligenceexplorepossiblelinkageitemresponsetheorysimultaneouslyestimatedparameterslatentcurvemodelsjointlikelihoodapproachieNLMIXEDWINBUGSincludedgrouppotentialinterindividuallevelschangeresultinginvariantRaschanalysesleadnewmethodologicalsuggestionsdealingrepeatedmeasurementsdevelopmentalModelinglife-spangrowthcurvescognitionmultiplesamplesmeasurement

Similar Articles

Cited By