Renal Tumor Quantification and Classification in Contrast-Enhanced Abdominal CT.

Marius George Linguraru, Jianhua Yao, Rabindra Gautam, James Peterson, Zhixi Li, W Marston Linehan, Ronald M Summers
Author Information
  1. Marius George Linguraru: Diagnostic Radiology Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Abstract

Kidney cancer occurs in both a hereditary (inherited) and sporadic (non-inherited) form. It is estimated that almost a quarter of a million people in the USA are living with kidney cancer and their number increases with 51,000 diagnosed with the disease every year. In clinical practice, the response to treatment is monitored by manual measurements of tumor size, which are 2D, do not reflect the 3D geometry and enhancement of tumors, and show high intra- and inter-operator variability. We propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the management of tumor diagnoses and responses to new treatments. The algorithm employs anisotropic diffusion (for smoothing), a combination of fast-marching and geodesic level-sets (for segmentation), and a novel statistical refinement step to adapt to the shape of the lesions. It also quantifies the 3D size, volume and enhancement of the lesion and allows serial management over time. Tumors are robustly segmented and the comparison between manual and semi-automated quantifications shows disparity within the limits of inter-observer variability. The analysis of lesion enhancement for tumor classification shows great separation between cysts, von Hippel-Lindau syndrome lesions and hereditary papillary renal carcinomas (HPRC) with p-values inferior to 0.004. The results on temporal evaluation of tumors from serial scans illustrate the potential of the method to become an important tool for disease monitoring, drug trials and noninvasive clinical surveillance.

References

  1. Int J Med Robot. 2006 Mar;2(1):91-7 [PMID: 17520618]
  2. Invest Radiol. 1998 Jun;33(6):348-55 [PMID: 9647447]
  3. Int J Radiat Oncol Biol Phys. 2005 Mar 1;61(3):954-60 [PMID: 15708280]
  4. Radiology. 2007 Aug;244(2):494-504 [PMID: 17641370]
  5. Acta Radiol. 2004 Nov;45(7):791-5 [PMID: 15624525]
  6. Comput Aided Surg. 2006 May;11(3):127-36 [PMID: 16829506]
  7. BJU Int. 2005 Mar;95 Suppl 2:2-7 [PMID: 15720328]
  8. Am J Hum Genet. 2005 Jun;76(6):1023-33 [PMID: 15852235]
  9. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):758-65 [PMID: 17354841]
  10. Eur Radiol. 2006 Jun;16(6):1244-52 [PMID: 16404565]
  11. Cancer Cell. 2004 Sep;6(3):223-8 [PMID: 15380513]
  12. Lancet Oncol. 2007 Nov;8(11):956-7 [PMID: 17976606]
  13. IEEE Trans Med Imaging. 2003 Apr;22(4):483-92 [PMID: 12774894]
  14. Eur J Radiol. 2007 Sep;63(3):420-6 [PMID: 17367973]
  15. IEEE Trans Med Imaging. 2003 Jan;22(1):120-8 [PMID: 12703765]
  16. Med Image Anal. 2006 Dec;10(6):850-62 [PMID: 16945569]
  17. Med Image Anal. 1998 Sep;2(3):243-60 [PMID: 9873902]
  18. J Urol. 2004 Oct;172(4 Pt 1):1256-61 [PMID: 15371818]
  19. J Urol. 2003 Dec;170(6 Pt 1):2163-72 [PMID: 14634372]
  20. Clin Cancer Res. 2007 Jan 15;13(2 Pt 2):667s-670s [PMID: 17255291]
  21. J Urol. 2005 May;173(5):1482-6 [PMID: 15821464]
  22. Acad Radiol. 2006 Oct;13(10):1254-65 [PMID: 16979075]
  23. Magn Reson Med. 2007 Jun;57(6):1159-67 [PMID: 17534915]
  24. Med Phys. 2004 Mar;31(3):427-32 [PMID: 15070239]
  25. J Comput Assist Tomogr. 2007 Jan-Feb;31(1):37-41 [PMID: 17259831]
  26. Lab Invest. 1998 May;78(5):511-22 [PMID: 9605176]
  27. Abdom Imaging. 2000 May-Jun;25(3):317-21 [PMID: 10823459]
  28. IEEE Trans Med Imaging. 2002 May;21(5):538-50 [PMID: 12071624]
  29. Nat Clin Pract Urol. 2005 May;2(5):248-55 [PMID: 16474836]
  30. Nat Rev Cancer. 2005 Jul;5(7):516-25 [PMID: 15965493]
  31. Radiology. 2007 Sep;244(3):767-75 [PMID: 17709828]
  32. Comput Aided Surg. 2006 May;11(3):119-25 [PMID: 16829505]

Grants

  1. Z01 SC006659-25/Intramural NIH HHS
  2. Z99 CL999999/Intramural NIH HHS

Word Cloud

Created with Highcharts 10.0.0tumorenhancementtumorscancerhereditarydiseaseclinicalmanualsize3DvariabilitytoolrenalCTmanagementlesionslesionserialshowsKidneyoccursinheritedsporadicnon-inheritedformestimatedalmostquartermillionpeopleUSAlivingkidneynumberincreases51000diagnosedeveryyearpracticeresponsetreatmentmonitoredmeasurements2Dreflectgeometryshowhighintra-inter-operatorproposecomputer-assistedradiologyassesscontrast-enhanceddiagnosesresponsesnewtreatmentsalgorithmemploysanisotropicdiffusionsmoothingcombinationfast-marchinggeodesiclevel-setssegmentationnovelstatisticalrefinementstepadaptshapealsoquantifiesvolumeallowstimeTumorsrobustlysegmentedcomparisonsemi-automatedquantificationsdisparitywithinlimitsinter-observeranalysisclassificationgreatseparationcystsvonHippel-LindausyndromepapillarycarcinomasHPRCp-valuesinferior0004resultstemporalevaluationscansillustratepotentialmethodbecomeimportantmonitoringdrugtrialsnoninvasivesurveillanceRenalTumorQuantificationClassificationContrast-EnhancedAbdominal

Similar Articles

Cited By