Differential response patterns in the si barrel and septal compartments during mechanical whisker stimulation.

Shubhodeep Chakrabarti, Kevin D Alloway
Author Information
  1. Shubhodeep Chakrabarti: Department of Neural and Behavioral Sciences, Pennsylvania State University, College of Medicine, H109, Hershey Medical Ctr., 500 University Dr., Hershey, PA 17033-2255, USA.

Abstract

A growing body of evidence suggests that the barrel and septal regions in layer IV of rat primary somatosensory (SI) cortex may represent separate processing channels. To assess this view, pairs of barrel and septal neurons were recorded simultaneously in the anesthetized rat while a 4x4 array of 16 whiskers was mechanically stimulated at 4, 8, 12, and 16 Hz. Compared with barrel neurons, regular-spiking septal neurons displayed greater increases in response latencies as the frequency of whisker stimulation increased. Cross-correlation analysis indicated that the incidence and strength of neuronal coordination varied with the relative spatial configuration (within vs. across rows) and compartmental location (barrel vs. septa) of the recorded neurons. Barrel and septal neurons were strongly coordinated if both neurons were in close proximity and resided in the same row. Some barrel neurons were weakly coordinated, but only if they resided in the same row. By contrast, the strength of coordination among pairs of septal neurons did not vary with their spatial proximity or their spatial configuration within the arcs and rows of the barrel field. These differential responses provide further support for the view that the barrel and septal regions represent the cortical gateway for processing streams that encode specific aspects of the sensorimotor information associated with whisking behavior.

References

  1. J Neurosci. 2008 May 14;28(20):5169-77 [PMID: 18480273]
  2. J Comp Neurol. 1985 Aug 8;238(2):225-35 [PMID: 2413086]
  3. J Neurosci. 2000 Oct 1;20(19):7455-62 [PMID: 11007905]
  4. J Comp Neurol. 1995 Apr 17;354(4):551-63 [PMID: 7541807]
  5. J Comp Neurol. 1984 Oct 20;229(2):199-213 [PMID: 6438190]
  6. Brain Res. 1973 Mar 15;51:326-31 [PMID: 4706020]
  7. J Physiol. 2006 Sep 1;575(Pt 2):583-602 [PMID: 16793907]
  8. J Neurophysiol. 1993 Sep;70(3):892-908 [PMID: 8229177]
  9. Cereb Cortex. 2003 Jan;13(1):53-62 [PMID: 12466215]
  10. Exp Brain Res. 1990;82(2):247-53 [PMID: 2286230]
  11. Neural Comput. 1998 Apr 1;10(3):597-650 [PMID: 9527836]
  12. Brain Res. 1988 Nov 1;463(2):346-51 [PMID: 2461788]
  13. Curr Opin Neurobiol. 2006 Aug;16(4):435-44 [PMID: 16837190]
  14. Brain Res. 1979 Apr 13;165(2):327-32 [PMID: 421142]
  15. J Comp Neurol. 1999 Jun 14;408(4):489-505 [PMID: 10340500]
  16. J Neurophysiol. 1985 Oct;54(4):782-806 [PMID: 2999347]
  17. J Comp Neurol. 2006 Oct 10;498(5):624-36 [PMID: 16917827]
  18. J Neurophysiol. 1993 Jul;70(1):387-96 [PMID: 8395585]
  19. J Neurosci. 2002 Dec 15;22(24):10966-75 [PMID: 12486192]
  20. J Neurophysiol. 2004 Sep;92(3):1464-78 [PMID: 15056676]
  21. J Comp Neurol. 1991 Dec 8;314(2):217-36 [PMID: 1723993]
  22. J Neurosci. 2006 Nov 22;26(47):12198-205 [PMID: 17122044]
  23. J Neurophysiol. 1999 Mar;81(3):999-1013 [PMID: 10085328]
  24. J Neurosci. 2007 Nov 7;27(45):12407-12 [PMID: 17989305]
  25. Science. 1973 Jan 26;179(4071):395-8 [PMID: 4682966]
  26. J Neurophysiol. 2008 Jul;100(1):50-63 [PMID: 18450580]
  27. J Neurosci. 2005 Jun 15;25(24):5670-9 [PMID: 15958733]
  28. Somatosens Mot Res. 1993;10(1):1-16 [PMID: 8484292]
  29. J Neurophysiol. 2008 Aug;100(2):681-9 [PMID: 18234976]
  30. Cereb Cortex. 2007 Dec;17(12):2853-65 [PMID: 17389627]
  31. Cereb Cortex. 2008 May;18(5):979-89 [PMID: 17702950]
  32. J Neurosci. 2003 Feb 15;23(4):1298-309 [PMID: 12598618]
  33. J Comp Neurol. 1987 Sep 15;263(3):326-46 [PMID: 2822774]
  34. J Neurophysiol. 2002 Feb;87(2):1028-34 [PMID: 11826066]
  35. J Physiol. 2002 Aug 15;543(Pt 1):49-70 [PMID: 12181281]
  36. J Comp Neurol. 2004 Dec 13;480(3):299-309 [PMID: 15515173]
  37. J Comp Neurol. 1992 Apr 22;318(4):462-76 [PMID: 1578013]
  38. J Neurophysiol. 1999 Oct;82(4):1808-17 [PMID: 10515970]
  39. J Neurophysiol. 1978 May;41(3):798-820 [PMID: 660231]
  40. J Neurophysiol. 2001 Jul;86(1):339-53 [PMID: 11431515]
  41. Brain Res. 1970 Jan 20;17(2):205-42 [PMID: 4904874]
  42. J Neurophysiol. 1996 Apr;75(4):1444-57 [PMID: 8727389]
  43. Prog Brain Res. 2001;130:75-87 [PMID: 11480290]
  44. Nature. 1999 Nov 4;402(6757):75-9 [PMID: 10573419]
  45. J Comp Neurol. 1990 Jan 8;291(2):231-55 [PMID: 2298933]
  46. J Neurosci. 2001 Apr 15;21(8):2699-710 [PMID: 11306623]
  47. Nature. 2000 Jul 20;406(6793):302-6 [PMID: 10917531]
  48. J Neurosci. 2009 Apr 1;29(13):4089-95 [PMID: 19339604]
  49. J Neurosci. 2000 Jul 15;20(14):5300-11 [PMID: 10884314]
  50. J Comp Neurol. 1989 Jul 15;285(3):325-38 [PMID: 2547850]
  51. J Neurophysiol. 2001 Jul;86(1):354-67 [PMID: 11431516]
  52. J Comp Neurol. 1987 Sep 8;263(2):265-81 [PMID: 3667981]
  53. J Neurosci. 2001 Nov 1;21(21):8435-46 [PMID: 11606632]
  54. J Neurophysiol. 1992 Oct;68(4):1216-28 [PMID: 1432079]
  55. Brain Res. 1975 Mar 28;86(3):469-72 [PMID: 1116010]
  56. J Neurophysiol. 1989 May;61(5):900-17 [PMID: 2723733]
  57. Brain Res. 1979 Jul 27;171(1):11-28 [PMID: 223730]
  58. Exp Brain Res. 2002 Nov;147(2):227-42 [PMID: 12410338]
  59. Biophys J. 1972 May;12(5):453-73 [PMID: 5030560]
  60. J Neurosci. 2009 Feb 25;29(8):2384-92 [PMID: 19244514]
  61. J Comp Neurol. 1976 Mar 15;166(2):173-89 [PMID: 770516]
  62. Neural Comput. 2006 Jul;18(7):1611-36 [PMID: 16764516]

Grants

  1. NS-052689/NINDS NIH HHS
  2. NS-37532/NINDS NIH HHS

MeSH Term

Action Potentials
Afferent Pathways
Animals
Biophysics
Male
Neurons
Physical Stimulation
Rats
Rats, Sprague-Dawley
Septum of Brain
Somatosensory Cortex
Statistics as Topic
Time Factors
Vibrissae

Word Cloud

Created with Highcharts 10.0.0barrelneuronsseptalspatialregionsratrepresentprocessingviewpairsrecorded16responsewhiskerstimulationstrengthcoordinationconfigurationwithinvsrowscoordinatedproximityresidedrowgrowingbodyevidencesuggestslayerIVprimarysomatosensorySIcortexmayseparatechannelsassesssimultaneouslyanesthetized4x4arraywhiskersmechanicallystimulated4812HzComparedregular-spikingdisplayedgreaterincreaseslatenciesfrequencyincreasedCross-correlationanalysisindicatedincidenceneuronalvariedrelativeacrosscompartmentallocationseptaBarrelstronglycloseweaklycontrastamongvaryarcsfielddifferentialresponsesprovidesupportcorticalgatewaystreamsencodespecificaspectssensorimotorinformationassociatedwhiskingbehaviorDifferentialpatternssicompartmentsmechanical

Similar Articles

Cited By