Physiological evidence for interaction between the HIV-1 co-receptor CXCR4 and the cannabinoid system in the brain.

Khalid Benamar, Menachem Yondorf, Ellen B Geller, Toby K Eisenstein, Martin W Adler
Author Information
  1. Khalid Benamar: Center for Substance Abuse Research, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA. kbenamar@temple.edu

Abstract

BACKGROUND AND PURPOSE: The chemokine, stromal cell-derived growth factor-1alpha (SDF-1alpha/CXCL12), a member of the CXC chemokine family, and the ligand for CXCR4, the co-receptor involved in the entry of human immunodeficiency virus-1 (HIV-1), was tested for its possible interaction with a physiological response to a cannabinoid.
EXPERIMENTAL APPROACH: The cannabinoid agonist, an aminoalkylindole, (+)-WIN 55,212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], was infused directly into the preoptic anterior hypothalamus (POAH), the primary brain area involved in thermoregulation.
KEY RESULTS: WIN 55,212-2 (5-15 microg) evoked a dose-related hypothermia, which was attenuated by SDF-1alpha/CXCL12 microinjected directly into the POAH. The inhibitory effect of SDF-1alpha/CXCL12 on WIN 55,212-2-induced hypothermia was reversed by 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] octohydrobromide dihydrate, an antagonist of SDF-1alpha/CXCL12, acting at its receptor, CXCR4.
CONCLUSION AND IMPLICATIONS: This study provides the first in vivo evidence for a thermoregulatory interaction between the HIV-1 co-receptor and the cannabinoid system in the brain.

References

  1. Brain Res. 2004 Sep 3;1019(1-2):22-7 [PMID: 15306234]
  2. J Pharmacol Exp Ther. 2002 Jun;301(3):963-8 [PMID: 12023525]
  3. Eur J Neurosci. 2003 Sep;18(6):1593-606 [PMID: 14511338]
  4. J Pharmacol Exp Ther. 2008 May;325(2):641-5 [PMID: 18281594]
  5. Neurobiol Dis. 1998 Dec;5(6 Pt B):447-61 [PMID: 9974177]
  6. Pain. 2001 May;92(1-2):91-100 [PMID: 11323130]
  7. Science. 1996 May 10;272(5263):872-7 [PMID: 8629022]
  8. Life Sci. 2002 Mar 22;70(18):2139-45 [PMID: 12002806]
  9. Neuropharmacology. 1995 Feb;34(2):175-80 [PMID: 7617143]
  10. Nature. 1996 Aug 29;382(6594):829-33 [PMID: 8752280]
  11. Am J Pathol. 1998 Mar;152(3):659-65 [PMID: 9502406]
  12. AAPS J. 2006 Jan 06;7(4):E865-70 [PMID: 16594639]
  13. Peptides. 2000 Nov;21(11):1735-42 [PMID: 11090929]
  14. Brain Res Bull. 1987 Aug;19(2):223-9 [PMID: 2822207]
  15. Neuroscience. 1998 Mar;83(2):393-411 [PMID: 9460749]
  16. J Pharmacol Exp Ther. 1992 Dec;263(3):1118-26 [PMID: 1335057]
  17. J Comp Neurol. 2008 Sep 10;510(2):207-20 [PMID: 18615560]
  18. Br J Pharmacol. 2007 Dec;152(7):1092-101 [PMID: 17876302]
  19. Am J Pathol. 1998 Jan;152(1):167-78 [PMID: 9422534]
  20. Drug Alcohol Depend. 2007 Apr 17;88(1):36-41 [PMID: 17049756]
  21. J Pharmacol Exp Ther. 1994 Dec;271(3):1383-90 [PMID: 7996450]
  22. Infect Dis Clin North Am. 2007 Mar;21(1):149-79, ix [PMID: 17502234]
  23. Trends Pharmacol Sci. 1999 Feb;20(2):73-8 [PMID: 10101968]
  24. Proc Natl Acad Sci U S A. 2002 May 14;99(10):7090-5 [PMID: 11983855]
  25. Nature. 1998 Jun 11;393(6685):595-9 [PMID: 9634238]
  26. J Pharmacol Exp Ther. 2007 Mar;320(3):1127-33 [PMID: 17194800]
  27. Front Neuroendocrinol. 2001 Jul;22(3):147-84 [PMID: 11456467]
  28. Neuroscience. 1992;48(3):655-68 [PMID: 1376455]
  29. Eur J Pharmacol. 1998 Feb 19;343(2-3):157-63 [PMID: 9570463]
  30. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10276-81 [PMID: 12130663]
  31. Br J Pharmacol. 1982 Feb;75(2):409-14 [PMID: 6313110]
  32. J Neurosci. 1991 Feb;11(2):563-83 [PMID: 1992016]
  33. J Pharmacol Exp Ther. 1997 Apr;281(1):499-507 [PMID: 9103537]
  34. J Neurovirol. 1999 Feb;5(1):13-26 [PMID: 10190686]
  35. J Neuroimmunol. 1998 Jun 1;86(1):1-12 [PMID: 9655467]
  36. J Leukoc Biol. 2005 Dec;78(6):1204-9 [PMID: 16204637]
  37. Ann N Y Acad Sci. 2000;917:135-44 [PMID: 11268337]
  38. J Neuroimmune Pharmacol. 2006 Mar;1(1):41-9 [PMID: 18040790]
  39. J Neurosci Res. 1998 Feb 1;51(3):391-402 [PMID: 9486774]

Grants

  1. P30 DA013429/NIDA NIH HHS
  2. R01 DA006650/NIDA NIH HHS
  3. DA 13429/NIDA NIH HHS
  4. DA 06650/NIDA NIH HHS

MeSH Term

Animals
Benzoxazines
Body Temperature
Cannabinoids
Chemokine CXCL12
HIV-1
Male
Microinjections
Morpholines
Naphthalenes
Preoptic Area
Rats
Rats, Sprague-Dawley
Receptors, CXCR4

Chemicals

Benzoxazines
Cannabinoids
Chemokine CXCL12
Cxcr4 protein, rat
Morpholines
Naphthalenes
Receptors, CXCR4
(3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone

Word Cloud

Created with Highcharts 10.0.0SDF-1alpha/CXCL12cannabinoidCXCR4co-receptorHIV-1interaction55brainANDchemokineinvolved212-24directlyPOAHWINhypothermiaevidencesystemBACKGROUNDPURPOSE:stromalcell-derivedgrowthfactor-1alphamemberCXCfamilyligandentryhumanimmunodeficiencyvirus-1testedpossiblephysiologicalresponseEXPERIMENTALAPPROACH:agonistaminoalkylindole+-WIN[5-dihydro-2-methyl-44-morpholinylmethyl-1-1-naphthalenyl-carbonyl-6H-pyrrolo[321ij]quinolin-6-one]infusedpreopticanteriorhypothalamusprimaryareathermoregulationKEYRESULTS:5-15microgevokeddose-relatedattenuatedmicroinjectedinhibitoryeffect212-2-inducedreversed11'-[14-phenylenebismethylene]bis[1811-tetraazacyclotetradecane]octohydrobromidedihydrateantagonistactingreceptorCONCLUSIONIMPLICATIONS:studyprovidesfirstvivothermoregulatoryPhysiological

Similar Articles

Cited By