Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel.

Lior Cohen, Yehu Moran, Amir Sharon, Daniel Segal, Dalia Gordon, Michael Gurevitz
Author Information
  1. Lior Cohen: Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. lcohen76@cc.huji.ac.il

Abstract

Several peptide families, including insect antimicrobial peptides, plant protease inhibitors, and ion channel gating modifiers, as well as blockers from scorpions, bear a common CSalphabeta scaffold. The high structural similarity between two peptides containing this scaffold, drosomycin and a truncated scorpion beta-toxin, has prompted us to examine and compare their biological effects. drosomycin is the most expressed antimicrobial peptide in Drosophila melanogaster immune response. A truncated scorpion beta-toxin is capable of binding and inducing conformational alteration of voltage-gated sodium channels. Here, we show that both peptides (i) exhibit anti-fungal activity at micromolar concentrations; (ii) enhance allosterically at nanomolar concentration the activity of LqhalphaIT, a scorpion alpha toxin that modulates the inactivation of the D. melanogaster voltage-gated sodium channel (DmNa(v)1); and (iii) inhibit the facilitating effect of the polyether brevetoxin-2 on DmNa(v)1 activation. Thus, the short CSalphabeta scaffold of drosomycin and the truncated scorpion toxin can maintain more than one bioactivity, and, in light of this new observation, we suggest that the biological role of peptides bearing this scaffold should be carefully examined. As for drosomycin, we discuss the intriguing possibility that it has additional functions in the fly, as implied by its tight interaction with DmNa(v)1.

References

  1. Biochem J. 2004 Mar 15;378(Pt 3):717-26 [PMID: 14674883]
  2. Cell Mol Life Sci. 2005 Oct;62(19-20):2257-69 [PMID: 16143827]
  3. FEBS Lett. 1993 Jun 28;325(1-2):63-6 [PMID: 8513894]
  4. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2152-7 [PMID: 11854512]
  5. Mol Pharmacol. 1986 Aug;30(2):129-35 [PMID: 2426567]
  6. FASEB J. 1998 Dec;12(15):1793-6 [PMID: 9837870]
  7. Toxicon. 2007 Mar 15;49(4):473-89 [PMID: 17197009]
  8. J Biol Chem. 2008 May 30;283(22):15169-76 [PMID: 18339620]
  9. J Mol Biol. 2007 Feb 16;366(2):586-601 [PMID: 17166514]
  10. J Biol Chem. 2004 Feb 27;279(9):8206-11 [PMID: 14672947]
  11. FEBS Lett. 1993 Jan 4;315(2):125-8 [PMID: 8380269]
  12. Biochemistry. 1996 Aug 6;35(31):10215-22 [PMID: 8756487]
  13. J Biol Chem. 2005 Feb 11;280(6):5045-53 [PMID: 15569679]
  14. Neurosci Lett. 1998 Mar 20;244(3):149-52 [PMID: 9593511]
  15. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590-5 [PMID: 11606746]
  16. J Neurosci. 2002 Jun 1;22(11):4364-71 [PMID: 12040042]
  17. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  18. Genetics. 2005 Dec;171(4):1847-59 [PMID: 16157672]
  19. Genetics. 2005 Apr;169(4):2023-34 [PMID: 15716507]
  20. Gene. 2006 Sep 1;379:26-32 [PMID: 16824706]
  21. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  22. Protein Sci. 1997 Sep;6(9):1878-84 [PMID: 9300487]
  23. FASEB J. 2006 Sep;20(11):1933-5 [PMID: 16877526]
  24. Nat Genet. 2007 Jun;39(6):715-20 [PMID: 17534367]
  25. Nat Immunol. 2002 Feb;3(2):121-6 [PMID: 11812988]
  26. FASEB J. 2004 Apr;18(6):683-9 [PMID: 15054090]
  27. Biochem J. 2007 Aug 15;406(1):41-8 [PMID: 17492942]

MeSH Term

Amino Acid Sequence
Animals
Drosophila Proteins
Drosophila melanogaster
Fungi
Immunity, Innate
Molecular Sequence Data
Potassium Channels, Voltage-Gated
Protein Binding
Sequence Alignment

Chemicals

Drosophila Proteins
Potassium Channels, Voltage-Gated
DRS protein, Drosophila

Word Cloud

Created with Highcharts 10.0.0peptidesscaffoldscorpionpeptidechanneldrosomycintruncatedmelanogastervoltage-gatedsodiumDmNav1antimicrobialCSalphabetabeta-toxinbiologicalDrosomycinDrosophilaactivitytoxinflySeveralfamiliesincludinginsectplantproteaseinhibitorsiongatingmodifierswellblockersscorpionsbearcommonhighstructuralsimilaritytwocontainingpromptedusexaminecompareeffectsexpressedimmuneresponsecapablebindinginducingconformationalalterationchannelsshowexhibitanti-fungalmicromolarconcentrationsiienhanceallostericallynanomolarconcentrationLqhalphaITalphamodulatesinactivationDiiiinhibitfacilitatingeffectpolyetherbrevetoxin-2activationThusshortcanmaintainonebioactivitylightnewobservationsuggestrolebearingcarefullyexamineddiscussintriguingpossibilityadditionalfunctionsimpliedtightinteractioninnateimmunityinteracts

Similar Articles

Cited By (17)