A habitat-based model for the spread of hantavirus between reservoir and spillover species.

Linda J S Allen, Curtis L Wesley, Robert D Owen, Douglas G Goodin, David Koch, Colleen B Jonsson, Yong-Kyu Chu, J M Shawn Hutchinson, Robert L Paige
Author Information
  1. Linda J S Allen: Texas Tech University, Department of Mathematics and Statistics, Lubbock, TX 79409, USA. linda.j.allen@ttu.edu

Abstract

New habitat-based models for spread of hantavirus are developed which account for interspecies interaction. Existing habitat-based models do not consider interspecies pathogen transmission, a primary route for emergence of new infectious diseases and reservoirs in wildlife and man. The modeling of interspecies transmission has the potential to provide more accurate predictions of disease persistence and emergence dynamics. The new models are motivated by our recent work on hantavirus in rodent communities in Paraguay. Our Paraguayan data illustrate the spatial and temporal overlaps among rodent species, one of which is the reservoir species for Jabora virus and others which are spillover species. Disease transmission occurs when their habitats overlap. Two mathematical models, a system of ordinary differential equations (ODE) and a continuous-time Markov chain (CTMC) model, are developed for spread of hantavirus between a reservoir and a spillover species. Analysis of a special case of the ODE model provides an explicit expression for the basic reproduction number, R(0), such that if R(0)<1, then the pathogen does not persist in either population but if R(0)>1, pathogen outbreaks or persistence may occur. Numerical simulations of the CTMC model display sporadic disease incidence, a new behavior of our habitat-based model, not present in other models, but which is a prominent feature of the seroprevalence data from Paraguay. Environmental changes that result in greater habitat overlap result in more encounters among various species that may lead to pathogen outbreaks and pathogen establishment in a new host.

References

  1. Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70 [PMID: 18772285]
  2. N Engl J Med. 2003 May 15;348(20):1948-51 [PMID: 12748314]
  3. Am J Trop Med Hyg. 1998 Nov;59(5):699-703 [PMID: 9840584]
  4. Am J Trop Med Hyg. 2005 Dec;73(6):1043-9 [PMID: 16354810]
  5. Math Med Biol. 2007 Mar;24(1):17-34 [PMID: 17012365]
  6. Am J Trop Med Hyg. 1981 Sep;30(5):1106-12 [PMID: 6116436]
  7. Conserv Biol. 2006 Jun;20(3):762-71 [PMID: 16909569]
  8. Emerg Infect Dis. 1999 Jan-Feb;5(1):95-101 [PMID: 10081676]
  9. Virus Res. 2006 May;117(2):215-26 [PMID: 16303200]
  10. Proc Biol Sci. 1999 Oct 7;266(1432):1939-45 [PMID: 10584336]
  11. Emerg Infect Dis. 1998 Jan-Mar;4(1):105-11 [PMID: 9452404]
  12. Math Biosci. 2003 Dec;186(2):191-217 [PMID: 14583172]
  13. J Med Virol. 2002 Dec;68(4):581-8 [PMID: 12376967]
  14. Epidemiol Infect. 2007 Jan;135(1):46-56 [PMID: 16753079]
  15. Am J Trop Med Hyg. 2006 Dec;75(6):1127-34 [PMID: 17172380]
  16. Am J Trop Med Hyg. 1997 Mar;56(3):273-84 [PMID: 9129529]
  17. Bull Math Biol. 2003 May;65(3):519-34 [PMID: 12749537]
  18. Epidemiol Infect. 2006 Feb;134(1):21-30 [PMID: 16409647]
  19. Proc Biol Sci. 2001 May 7;268(1470):985-93 [PMID: 11370974]
  20. Am J Trop Med Hyg. 2001 Jul;65(1):57-63 [PMID: 11504409]
  21. Theor Popul Biol. 2001 Aug;60(1):59-71 [PMID: 11589638]
  22. J Clin Microbiol. 2005 Feb;43(2):808-12 [PMID: 15695684]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011912 [PMID: 12241389]
  24. J Infect Dis. 1994 Jun;169(6):1271-80 [PMID: 8195603]
  25. J Wildl Dis. 2012 Apr;48(2):267-81 [PMID: 22493103]
  26. Science. 2000 Jan 21;287(5452):443-9 [PMID: 10642539]
  27. Am J Trop Med Hyg. 2001 Dec;65(6):768-76 [PMID: 11791973]
  28. Bull Math Biol. 2007 Jul;69(5):1511-36 [PMID: 17237913]
  29. J Virol. 2004 Nov;78(21):11972-9 [PMID: 15479837]
  30. Math Biosci. 2002 Nov-Dec;180:29-48 [PMID: 12387915]
  31. Bull Math Biol. 2006 Apr;68(3):511-24 [PMID: 16794943]
  32. Virus Genes. 1997;15(1):79-82 [PMID: 9354274]
  33. Arch Virol. 1999;144(12):2415-28 [PMID: 10664394]
  34. MMWR Recomm Rep. 2002 Jul 26;51(RR-9):1-12 [PMID: 12194506]
  35. Emerg Infect Dis. 2008 Sep;14(9):1447-51 [PMID: 18760017]
  36. J Clin Virol. 2003 Apr;26(3):265-75 [PMID: 12637075]
  37. J Vector Ecol. 2009 Jun;34(1):104-13 [PMID: 20836810]

Grants

  1. R01 TW006986-02/FIC NIH HHS
  2. R01 TW006986/FIC NIH HHS
  3. R01 TW006986-01/FIC NIH HHS
  4. R01TW006986-02/FIC NIH HHS
  5. R01 TW006986-04S1/FIC NIH HHS
  6. R01 TW006986-04/FIC NIH HHS
  7. R01 TW006986-03/FIC NIH HHS

MeSH Term

Animals
Disease Reservoirs
Ecosystem
Geographic Information Systems
Hantavirus Infections
Male
Markov Chains
Models, Biological
Paraguay
Rodent Diseases
Species Specificity

Word Cloud

Created with Highcharts 10.0.0speciesmodelspathogenmodelhabitat-basedhantavirusnewspreadinterspeciestransmissionreservoirspilloverR0developedemergencediseasepersistencerodentParaguaydataamongoverlapODECTMCoutbreaksmayresultNewaccountinteractionExistingconsiderprimaryrouteinfectiousdiseasesreservoirswildlifemanmodelingpotentialprovideaccuratepredictionsdynamicsmotivatedrecentworkcommunitiesParaguayanillustratespatialtemporaloverlapsoneJaboravirusothersDiseaseoccurshabitatsTwomathematicalsystemordinarydifferentialequationscontinuous-timeMarkovchainAnalysisspecialcaseprovidesexplicitexpressionbasicreproductionnumber<1persisteitherpopulation>1occurNumericalsimulationsdisplaysporadicincidencebehaviorpresentprominentfeatureseroprevalenceEnvironmentalchangesgreaterhabitatencountersvariousleadestablishmenthost

Similar Articles

Cited By