A possibilistic framework for constraint-based metabolic flux analysis.

Francisco Llaneras, Antonio Sala, Jesús Picó
Author Information
  1. Francisco Llaneras: Instituto de Automática AI2, Universidad Politécnica de Valencia, Camino de Vera s/n 46022, Spain. frallaes@doctor.upv.es

Abstract

BACKGROUND: Constraint-based models allow the calculation of the metabolic flux states that can be exhibited by cells, standing out as a powerful analytical tool, but they do not determine which of these are likely to be existing under given circumstances. Typical methods to perform these predictions are (a) flux balance analysis, which is based on the assumption that cell behaviour is optimal, and (b) metabolic flux analysis, which combines the model with experimental measurements.
RESULTS: Herein we discuss a possibilistic framework to perform metabolic flux estimations using a constraint-based model and a set of measurements. The methodology is able to handle inconsistencies, by considering sensors errors and model imprecision, to provide rich and reliable flux estimations. The methodology can be cast as linear programming problems, able to handle thousands of variables with efficiency, so it is suitable to deal with large-scale networks. Moreover, the possibilistic estimation does not attempt necessarily to predict the actual fluxes with precision, but rather to exploit the available data--even if those are scarce--to distinguish possible from impossible flux states in a gradual way.
CONCLUSION: We introduce a possibilistic framework for the estimation of metabolic fluxes, which is shown to be flexible, reliable, usable in scenarios lacking data and computationally efficient.

References

  1. Biotechnol Bioeng. 2004 Dec 5;88(5):601-12 [PMID: 15470705]
  2. J Theor Biol. 2007 May 21;246(2):290-308 [PMID: 17292923]
  3. Mol Syst Biol. 2007;3:121 [PMID: 17593909]
  4. J Biosci Bioeng. 2008 Jan;105(1):1-11 [PMID: 18295713]
  5. J Bacteriol. 2002 Aug;184(16):4582-93 [PMID: 12142428]
  6. Biotechnol Bioeng. 2000 Mar 20;67(6):872-85 [PMID: 10699864]
  7. Bioinformatics. 2006 Nov 1;22(21):2681-7 [PMID: 16940326]
  8. Nat Biotechnol. 2000 Nov;18(11):1147-50 [PMID: 11062431]
  9. BMC Bioinformatics. 2006 Apr 03;7:186 [PMID: 16584566]
  10. Q Rev Biophys. 1998 Feb;31(1):41-106 [PMID: 9717198]
  11. Nature. 2002 Nov 14;420(6912):206-10 [PMID: 12432404]
  12. Mol Syst Biol. 2007;3:119 [PMID: 17625511]
  13. BMC Syst Biol. 2009 Mar 25;3:37 [PMID: 19321003]
  14. J Theor Biol. 2008 Jun 7;252(3):497-504 [PMID: 18249414]
  15. BMC Bioinformatics. 2006 Oct 12;7:445 [PMID: 17038164]
  16. BMC Bioinformatics. 2007 Oct 30;8:421 [PMID: 17971203]
  17. Trends Biotechnol. 2003 Apr;21(4):162-9 [PMID: 12679064]
  18. Metab Eng. 2001 Jul;3(3):265-83 [PMID: 11461148]
  19. Metab Eng. 1999 Apr;1(2):166-79 [PMID: 10935929]
  20. Nat Biotechnol. 2001 Feb;19(2):125-30 [PMID: 11175725]
  21. Biotechnol Bioeng. 1994 Jan 5;43(1):3-10 [PMID: 18613305]
  22. Biotechnol Bioeng. 2007 Aug 15;97(6):1535-49 [PMID: 17238207]
  23. Biotechnol Bioeng. 1994 Jan 5;43(1):11-20 [PMID: 18613306]
  24. Biotechnol Bioeng. 1996 Jan 20;49(2):111-29 [PMID: 18623562]
  25. Metab Eng. 2006 Sep;8(5):432-46 [PMID: 16750927]
  26. Mol Syst Biol. 2006;2:62 [PMID: 17102807]
  27. J Biosci Bioeng. 2003;95(4):317-27 [PMID: 16233414]
  28. Biophys J. 2007 Mar 1;92(5):1792-805 [PMID: 17172310]
  29. Curr Opin Biotechnol. 2003 Oct;14(5):491-6 [PMID: 14580578]
  30. Metab Eng. 2001 Jul;3(3):195-206 [PMID: 11461141]
  31. Biotechnol Bioeng. 2002 Mar 30;77(7):734-51 [PMID: 11835134]
  32. IEEE Trans Syst Man Cybern B Cybern. 1998;28(2):268-75 [PMID: 18255945]

MeSH Term

Corynebacterium glutamicum
Metabolomics
Monte Carlo Method

Word Cloud

Created with Highcharts 10.0.0fluxmetabolicpossibilisticanalysismodelframeworkstatescanperformmeasurementsestimationsconstraint-basedmethodologyablehandlereliableestimationfluxesBACKGROUND:Constraint-basedmodelsallowcalculationexhibitedcellsstandingpowerfulanalyticaltooldeterminelikelyexistinggivencircumstancesTypicalmethodspredictionsbalancebasedassumptioncellbehaviouroptimalbcombinesexperimentalRESULTS:Hereindiscussusingsetinconsistenciesconsideringsensorserrorsimprecisionproviderichcastlinearprogrammingproblemsthousandsvariablesefficiencysuitabledeallarge-scalenetworksMoreoverattemptnecessarilypredictactualprecisionratherexploitavailabledata--evenscarce--todistinguishpossibleimpossiblegradualwayCONCLUSION:introduceshownflexibleusablescenarioslackingdatacomputationallyefficient

Similar Articles

Cited By