Relationships between deficits in tissue mass and transcriptional programs after partial hepatectomy in mice.

Jiangning Li, Jean S Campbell, Claudia Mitchell, Ryan S McMahan, Xuesong Yu, Kimberly J Riehle, Roger E Bumgarner, Nelson Fausto
Author Information
  1. Jiangning Li: Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA.

Abstract

Liver regeneration after two-thirds partial hepatectomy (2/3 PH) results in synchronized proliferation of hepatocytes and rapid restoration of liver mass. Understanding the mechanisms that regulate this process has both biological and clinical importance. Using cDNA microarray analysis, we investigated whether gene activation after 2/3 PH is specifically related to liver growth and hepatocyte proliferation. We generated gene expression profiles at 4, 12, 20, and 30 hours after 2/3 PH and compared them with profiles obtained at the same time points after 1/3 PH, a procedure that causes minimal DNA replication. Surprisingly, a significant number of genes whose expression is altered after 2/3 PH are similarly up- or down-regulated after 1/3 PH, particularly at 4 hours. We identified a number of genes and transcription factors that are more highly expressed ("preferential expression") after 2/3 PH and show that a shift in transcriptional programs in the regenerating liver occurs between 4 and 12 hours after 2/3 PH, a time at which the decision to replicate appears to be made. These results show that the liver responds to PH with massive changes of gene expression, even in the absence of DNA replication. We suggest that the changes in gene expression during the first 4 to 6 hours after 2/3 PH may induce chromatin remodeling and facilitate the binding of new sets of transcription factors required for DNA replication.

References

  1. Cancer Res. 1964 Oct;24:1611-25 [PMID: 14234005]
  2. Nature. 2002 Dec 5;420(6915):563-73 [PMID: 12466851]
  3. Mol Biol Cell. 2007 Oct;18(10):4085-95 [PMID: 17699597]
  4. Genome Biol. 2003;4(1):R7 [PMID: 12540299]
  5. Nat Rev Mol Cell Biol. 2004 Oct;5(10):836-47 [PMID: 15459664]
  6. Hepatology. 2007 Jun;45(6):1471-7 [PMID: 17427161]
  7. Int J Biochem Cell Biol. 2007;39(4):842-50 [PMID: 17317269]
  8. Genome Biol. 2003;4(4):R28 [PMID: 12702209]
  9. Am J Physiol. 1997 Oct;273(4):G905-12 [PMID: 9357834]
  10. Cell Cycle. 2008 Jul 15;7(14):2215-24 [PMID: 18635970]
  11. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11181-6 [PMID: 12177410]
  12. BMC Genomics. 2008 Nov 06;9:527 [PMID: 18990226]
  13. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4477-82 [PMID: 15070743]
  14. Genes Dev. 2006 Aug 15;20(16):2306-14 [PMID: 16912279]
  15. BMC Genomics. 2004 Nov 08;5:87 [PMID: 15533245]
  16. J Clin Invest. 1998 Sep 1;102(5):996-1007 [PMID: 9727068]
  17. J Hepatol. 2003 Jun;38(6):784-92 [PMID: 12763372]
  18. J Biol Chem. 2005 Feb 4;280(5):3715-22 [PMID: 15546871]
  19. J Biol Chem. 2007 Apr 13;282(15):11197-204 [PMID: 17227769]
  20. Cell Cycle. 2009 May 15;8(10):1621-9 [PMID: 19377303]
  21. Hepatology. 2004 Jun;39(6):1477-87 [PMID: 15185286]
  22. J Leukoc Biol. 2007 Jan;81(1):328-35 [PMID: 17046970]
  23. Mol Cell Biol. 2006 Jan;26(1):155-68 [PMID: 16354687]
  24. Liver Transpl. 2008 Dec;14(12):1718-24 [PMID: 19025926]
  25. Microsurgery. 2006;26(6):465-9 [PMID: 16924633]
  26. Transplantation. 2003 Jul 15;76(1):5-10 [PMID: 12865779]
  27. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  28. Hepatology. 2006 Feb;43(2 Suppl 1):S45-53 [PMID: 16447274]
  29. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10608-13 [PMID: 15249655]
  30. Hepatology. 2002 Mar;35(3):525-34 [PMID: 11870364]
  31. Nat Genet. 2002 May;31(1):19-20 [PMID: 11984561]
  32. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  33. J Cell Physiol. 2007 Nov;213(2):286-300 [PMID: 17559071]
  34. OMICS. 2003 Fall;7(3):235-52 [PMID: 14583114]
  35. J Biol Chem. 2005 Jan 28;280(4):2562-8 [PMID: 15536070]
  36. C R Biol. 2003 Oct-Nov;326(10-11):1021-30 [PMID: 14744109]
  37. Nucleic Acids Res. 2003 Jan 1;31(1):219-23 [PMID: 12519986]
  38. Genome Biol. 2003;4(10):R70 [PMID: 14519205]
  39. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3663-7 [PMID: 11891324]
  40. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]

Grants

  1. 2T32 ES 007032/NIEHS NIH HHS
  2. R37 CA023226/NCI NIH HHS
  3. CA-127228/NCI NIH HHS
  4. CA-74131/NCI NIH HHS
  5. R01 CA074131/NCI NIH HHS
  6. T32 ES007032/NIEHS NIH HHS
  7. CA-23226/NCI NIH HHS
  8. P01 AI052106/NIAID NIH HHS
  9. R01 CA023226/NCI NIH HHS
  10. R01 CA127228/NCI NIH HHS
  11. 5P01 AI 052106/NIAID NIH HHS
  12. 1S10 RR 01942/NCRR NIH HHS

MeSH Term

Animals
Cell Count
Cell Proliferation
Chromatin Assembly and Disassembly
DNA Replication
Gene Expression Profiling
Gene Expression Regulation
Hepatectomy
Liver
Liver Regeneration
Male
Mice
Mice, Inbred C57BL
Oligonucleotide Array Sequence Analysis
Time Factors
Transcription, Genetic

Word Cloud

Created with Highcharts 10.0.0PH2/3livergeneexpression4hoursDNAreplicationpartialhepatectomyresultsproliferationmassprofiles12time1/3numbergenestranscriptionfactorsshowtranscriptionalprogramschangesLiverregenerationtwo-thirdssynchronizedhepatocytesrapidrestorationUnderstandingmechanismsregulateprocessbiologicalclinicalimportanceUsingcDNAmicroarrayanalysisinvestigatedwhetheractivationspecificallyrelatedgrowthhepatocytegenerated2030comparedobtainedpointsprocedurecausesminimalSurprisinglysignificantwhosealteredsimilarlyup-down-regulatedparticularlyidentifiedhighlyexpressed"preferentialexpression"shiftregeneratingoccursdecisionreplicateappearsmaderespondsmassiveevenabsencesuggestfirst6mayinducechromatinremodelingfacilitatebindingnewsetsrequiredRelationshipsdeficitstissuemice

Similar Articles

Cited By