Mycobacterium tuberculosis is able to accumulate and utilize cholesterol.

Anna Brzostek, Jakub Pawelczyk, Anna Rumijowska-Galewicz, Bozena Dziadek, Jaroslaw Dziadek
Author Information
  1. Anna Brzostek: Institute for Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.

Abstract

It is expected that the obligatory human pathogen Mycobacterium tuberculosis must adapt metabolically to the various nutrients available during its cycle of infection, persistence, and reactivation. Cholesterol, which is an important part of the mammalian cytoplasmic membrane, is a potential energy source. Here, we show that M. tuberculosis grown in medium containing a carbon source other than Cholesterol is able to accumulate Cholesterol in the free-lipid zone of its cell wall. This Cholesterol accumulation decreases the permeability of the cell wall for the primary antituberculosis drug, rifampin, and partially masks the mycobacterial surface antigens. Furthermore, M. tuberculosis was able to grow on mineral medium supplemented with Cholesterol as the sole carbon source. Targeted disruption of the Rv3537 (kstD) gene inhibited growth due to inactivation of the Cholesterol degradation pathway, as evidenced by accumulation of the intermediate, 9-hydroxy-4-androstene-3,17-dione. Our findings that M. tuberculosis is able to accumulate Cholesterol in the presence of alternative nutrients and use it when Cholesterol is the sole carbon source in vitro may facilitate future studies into the pathophysiology of this important deadly pathogen.

References

  1. Cell. 2001 Feb 23;104(4):477-85 [PMID: 11239406]
  2. Can J Microbiol. 2000 Sep;46(9):826-31 [PMID: 11006843]
  3. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11760-5 [PMID: 16868085]
  4. EMBO J. 1996 Dec 16;15(24):6960-8 [PMID: 9003772]
  5. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12989-94 [PMID: 14569030]
  6. Eur J Cell Biol. 1997 Sep;74(1):49-62 [PMID: 9309390]
  7. Infect Immun. 2005 Dec;73(12):7791-6 [PMID: 16299268]
  8. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1947-52 [PMID: 17264217]
  9. PLoS One. 2006 Dec 20;1:e43 [PMID: 17183672]
  10. Immunology. 1999 Nov;98(3):324-8 [PMID: 10583589]
  11. Nature. 1998 Jun 11;393(6685):537-44 [PMID: 9634230]
  12. Microbiology (Reading). 2000 Aug;146 ( Pt 8):1969-1975 [PMID: 10931901]
  13. J Exp Med. 2003 Sep 1;198(5):693-704 [PMID: 12953091]
  14. J Biol Chem. 2008 Dec 19;283(51):35368-74 [PMID: 18955493]
  15. Biochem J. 2008 Mar 1;410(2):339-46 [PMID: 18031290]
  16. FEMS Microbiol Lett. 2007 Oct;275(1):106-12 [PMID: 17651430]
  17. Lancet Infect Dis. 2003 Sep;3(9):578-90 [PMID: 12954564]
  18. Cell Microbiol. 2006 Jan;8(1):10-22 [PMID: 16367862]
  19. Cell Microbiol. 2006 Feb;8(2):242-56 [PMID: 16441435]
  20. Am J Pathol. 1976 Jul;84(1):164-92 [PMID: 937513]
  21. Eur J Cell Biol. 1995 Oct;68(2):167-82 [PMID: 8575463]
  22. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13642-7 [PMID: 15340136]
  23. J Antimicrob Chemother. 2000 Feb;45(2):159-65 [PMID: 10660497]
  24. Microbiology (Reading). 2005 Jul;151(Pt 7):2393-2402 [PMID: 16000729]
  25. Biochim Biophys Acta. 1973 Jan 2;291(1):61-70 [PMID: 4265275]
  26. PLoS Pathog. 2009 Feb;5(2):e1000289 [PMID: 19197369]
  27. Science. 2000 Jun 2;288(5471):1647-50 [PMID: 10834844]
  28. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8327-32 [PMID: 15928073]
  29. PLoS Pathog. 2009 Mar;5(3):e1000344 [PMID: 19300498]
  30. Microbiology (Reading). 2001 Oct;147(Pt 10):2769-2781 [PMID: 11577156]
  31. J Immunol. 2000 Nov 1;165(9):5186-91 [PMID: 11046051]
  32. Adv Appl Microbiol. 1977;22:29-58 [PMID: 337771]
  33. Eur J Immunol. 1999 Feb;29(2):556-62 [PMID: 10064071]
  34. Infect Immun. 2001 Dec;69(12):7820-31 [PMID: 11705964]
  35. Steroids. 1997 Apr;62(4):332-45 [PMID: 9090793]
  36. J Exp Med. 2003 Sep 1;198(5):705-13 [PMID: 12953092]
  37. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4376-80 [PMID: 18334639]
  38. PLoS Pathog. 2008 Nov;4(11):e1000204 [PMID: 19002241]
  39. EMBO J. 1998 Aug 17;17(16):4626-38 [PMID: 9707422]
  40. J Cell Biol. 1999 Aug 9;146(3):673-82 [PMID: 10444074]
  41. J Biol Chem. 1997 Aug 1;272(31):19242-7 [PMID: 9235917]

MeSH Term

Antitubercular Agents
Bacterial Proteins
Cell Wall
Cholesterol
Drug Resistance, Bacterial
Gene Deletion
Gene Expression Regulation, Bacterial
Mycobacterium tuberculosis
Rifampin

Chemicals

Antitubercular Agents
Bacterial Proteins
Cholesterol
Rifampin

Word Cloud

Created with Highcharts 10.0.0cholesteroltuberculosissourceableMcarbonaccumulatepathogenMycobacteriumnutrientsimportantmediumcellwallaccumulationsoleexpectedobligatoryhumanmustadaptmetabolicallyvariousavailablecycleinfectionpersistencereactivationCholesterolpartmammaliancytoplasmicmembranepotentialenergyshowgrowncontainingfree-lipidzonedecreasespermeabilityprimaryantituberculosisdrugrifampinpartiallymasksmycobacterialsurfaceantigensFurthermoregrowmineralsupplementedTargeteddisruptionRv3537kstDgeneinhibitedgrowthdueinactivationdegradationpathwayevidencedintermediate9-hydroxy-4-androstene-317-dionefindingspresencealternativeusevitromayfacilitatefuturestudiespathophysiologydeadlyutilize

Similar Articles

Cited By