Bayesian model selection maps for group studies.

M J Rosa, S Bestmann, L Harrison, W Penny
Author Information
  1. M J Rosa: Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, UK. mjoao@fil.ion.ucl.ac.uk

Abstract

This technical note describes the construction of posterior probability maps (PPMs) for Bayesian model selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian model comparisons that are analogous to the F-tests used in statistical parametric mapping, with the advantage that the models to be compared do not need to be nested. Additionally, an arbitrary number of models can be compared together. This note describes the integration of the Bayesian mapping approach with a random effects analysis model for BMS using group data. We illustrate the method using fMRI data from a group of subjects performing a target detection task.

References

  1. IEEE Trans Med Imaging. 2004 Feb;23(2):213-31 [PMID: 14964566]
  2. Hum Brain Mapp. 2000 Dec;11(4):233-48 [PMID: 11144753]
  3. Neuron. 2008 Jul 31;59(2):336-47 [PMID: 18667160]
  4. Ann N Y Acad Sci. 2007 May;1104:35-53 [PMID: 17416921]
  5. Neural Netw. 2006 Jun;19(5):535-46 [PMID: 16527453]
  6. Neuroimage. 2004 Apr;21(4):1748-61 [PMID: 15050595]
  7. Neuroimage. 2003 Jul;19(3):1240-9 [PMID: 12880849]
  8. Nature. 2008 Nov 13;456(7219):245-9 [PMID: 19005555]
  9. Neuroimage. 2004 Nov;23(3):806-26 [PMID: 15528082]
  10. Neuroimage. 2009 Jul 15;46(4):1004-17 [PMID: 19306932]
  11. Neuroimage. 2001 May;13(5):903-19 [PMID: 11304086]
  12. Neuroimage. 2005 Jan 15;24(2):350-62 [PMID: 15627578]
  13. J Neurosci. 2008 Nov 19;28(47):12539-45 [PMID: 19020046]
  14. Neuroimage. 2008 Jun;41(2):408-23 [PMID: 18387821]
  15. Neuroimage. 2002 Jun;16(2):484-512 [PMID: 12030833]
  16. Neuroimage. 2002 Jun;16(2):465-83 [PMID: 12030832]
  17. Curr Biol. 2008 May 20;18(10):775-780 [PMID: 18485711]
  18. Neuroimage. 2003 Jul;19(3):727-41 [PMID: 12880802]
  19. Neuroimage. 2006 May 1;30(4):1077-87 [PMID: 16635579]
  20. Neuroimage. 2008 Oct 1;42(4):1490-8 [PMID: 18639641]
  21. Nature. 2004 Oct 14;431(7010):760-7 [PMID: 15483596]
  22. J Neurosci. 2006 Sep 20;26(38):9629-38 [PMID: 16988033]
  23. Hum Brain Mapp. 2007 Apr;28(4):275-93 [PMID: 17133400]
  24. IEEE Trans Med Imaging. 2005 Jan;24(1):1-11 [PMID: 15638182]
  25. Neuroimage. 2004 Jul;22(3):1157-72 [PMID: 15219588]
  26. Neural Netw. 2005 Apr;18(3):225-30 [PMID: 15896570]
  27. Neuroimage. 2007 Nov 15;38(3):387-401 [PMID: 17884583]

Grants

  1. G0701787/Medical Research Council
  2. /Wellcome Trust

MeSH Term

Algorithms
Bayes Theorem
Brain
Echo-Planar Imaging
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Models, Statistical
Oxygen
Probability Theory
Reproducibility of Results

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0groupBayesianmodelusingeffectsdatanotedescribesmapsselectionBMSsubjectsmappingmodelscomparedtechnicalconstructionposteriorprobabilityPPMsleveltechniqueallowsneuroimagersmakeinferencesregionallyspecificimagingcharacterisedcomparisonsanalogousF-testsusedstatisticalparametricadvantageneednestedAdditionallyarbitrarynumbercantogetherintegrationapproachrandomanalysisillustratemethodfMRIperformingtargetdetectiontaskstudies

Similar Articles

Cited By