Regression-based approach for testing the association between multi-region haplotype configuration and complex trait.

Yanling Hu, Sinnwell Jason, Qishan Wang, Yuchun Pan, Xiangzhe Zhang, Hongbo Zhao, Changlong Li, Libin Sun
Author Information
  1. Yanling Hu: School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China. ylhu0323@sjtu.edu.cn

Abstract

BACKGROUND: It is quite common that the genetic architecture of complex traits involves many genes and their interactions. Therefore, dealing with multiple unlinked genomic regions simultaneously is desirable.
RESULTS: In this paper we develop a regression-based approach to assess the interactions of haplotypes that belong to different unlinked regions, and we use score statistics to test the null hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked region are considered. The multiple tests are settled via the minP approach. The P value of the "best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through simulation studies, we assess the performance of the proposed approach and demonstrate its validity and power in testing for haplotype interaction association.
CONCLUSION: Our simulations showed that, for binary trait without covariates, our proposed methods prove to be equal and even more powerful than htr and hapcc which are part of the FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow adjustment for other covariates. To test the validity, our methods are applied to analyze the association between four unlinked candidate genes and pig meat quality.

References

  1. Am J Hum Genet. 2004 Oct;75(4):561-70 [PMID: 15290652]
  2. Genet Epidemiol. 2005 Apr;28(3):220-31 [PMID: 15726584]
  3. Hum Hered. 2002;53(2):79-91 [PMID: 12037407]
  4. Nat Genet. 2005 Apr;37(4):413-7 [PMID: 15793588]
  5. Science. 2001 Nov 23;294(5547):1719-23 [PMID: 11721056]
  6. Genet Epidemiol. 2003 Jul;25(1):36-47 [PMID: 12813725]
  7. Hum Mol Genet. 2006 Apr 15;15(8):1365-74 [PMID: 16543358]
  8. Ann Hum Genet. 2005 Nov;69(Pt 6):747-56 [PMID: 16266412]
  9. Genome Res. 2001 Dec;11(12):2115-9 [PMID: 11731502]
  10. J Anim Sci. 2000 Mar;78(3):552-9 [PMID: 10764061]
  11. Am J Hum Genet. 2002 Feb;70(2):425-34 [PMID: 11791212]
  12. Genet Epidemiol. 2005 Dec;29(4):313-22 [PMID: 16240441]
  13. Genet Epidemiol. 2005 Apr;28(3):207-19 [PMID: 15637715]
  14. Nature. 2002 Aug 1;418(6897):544-8 [PMID: 12110843]
  15. Hum Hered. 2003;55(1):56-65 [PMID: 12890927]
  16. J Anim Sci. 2004;82 E-Suppl:E313-328 [PMID: 15471812]
  17. Eur J Hum Genet. 2009 Aug;17(8):1043-9 [PMID: 19223937]
  18. Adv Enzyme Regul. 1980;19:407-24 [PMID: 6278869]
  19. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12737-42 [PMID: 10535992]
  20. J Anim Sci. 1989 Dec;67(12):3313-21 [PMID: 2482286]
  21. Mamm Genome. 2000 Feb;11(2):131-5 [PMID: 10656927]
  22. Nature. 1997 Nov 27;390(6658):349 [PMID: 9389472]
  23. Am J Hum Genet. 2005 May;76(5):780-93 [PMID: 15786018]
  24. Am J Hum Genet. 2006 Feb;78(2):231-42 [PMID: 16365833]
  25. Nat Rev Genet. 2004 Aug;5(8):618-25 [PMID: 15266344]
  26. Biometrics. 2008 Sep;64(3):673-684 [PMID: 18047538]
  27. J Anim Sci. 1999 Apr;77(4):846-52 [PMID: 10328348]
  28. Genet Epidemiol. 2004 Apr;26(3):167-85 [PMID: 15022205]
  29. Mamm Genome. 1997 May;8(5):328-32 [PMID: 9107676]
  30. Bioinformatics. 2002 Feb;18(2):337-8 [PMID: 11847089]
  31. Cancer Epidemiol Biomarkers Prev. 2001 May;10(5):461-6 [PMID: 11352855]

MeSH Term

Animals
Computer Simulation
Gene Frequency
Genetic Markers
Haplotypes
Linkage Disequilibrium
Meat
Models, Genetic
Models, Statistical
Polymorphism, Single Nucleotide
Quantitative Trait, Heritable
Regression Analysis
Swine

Chemicals

Genetic Markers

Word Cloud

Created with Highcharts 10.0.0unlinkedapproachassociationmultiplecomplextraitsgenesinteractionsregionsassesstestAdditionallyviamulti-regionconfigurationsimulationsproposedvaliditytestinghaplotypetraitcovariatesmethodsappliedBACKGROUND:quitecommongeneticarchitectureinvolvesmanyThereforedealinggenomicsimultaneouslydesirableRESULTS:paperdevelopregression-basedhaplotypesbelongdifferentusescorestatisticsnullhypothesisnon-geneticmarkercombinationsregionconsideredtestssettledminPPvalue"best"multi-markercorrectedMonte-CarlosimulationstudiesperformancedemonstratepowerinteractionCONCLUSION:showedbinarywithoutproveequalevenpowerfulhtrhapccpartFAMHAPprogrammodelcanwidervarietyallowadjustmentanalyzefourcandidatepigmeatqualityRegression-based

Similar Articles

Cited By