D-AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin receptor recycling.

Christopher T Eggers, Jenny C Schafer, James R Goldenring, Susan S Taylor
Author Information
  1. Christopher T Eggers: Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA.

Abstract

Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.

References

  1. Int J Mol Med. 2007 Jan;19(1):129-41 [PMID: 17143557]
  2. Cell. 2003 Feb 21;112(4):507-17 [PMID: 12600314]
  3. J Cell Biol. 2000 May 15;149(4):901-14 [PMID: 10811830]
  4. EMBO J. 2003 Jun 2;22(11):2645-57 [PMID: 12773381]
  5. J Mol Biol. 2002 Aug 23;321(4):703-14 [PMID: 12206784]
  6. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11184-9 [PMID: 9326583]
  7. Nature. 1999 Sep 16;401(6750):286-90 [PMID: 10499588]
  8. Mol Biol Cell. 2004 Aug;15(8):3530-41 [PMID: 15181150]
  9. J Cell Biol. 1996 Nov;135(4):913-24 [PMID: 8922376]
  10. J Biol Chem. 1997 Jun 6;272(23):14800-4 [PMID: 9169447]
  11. Mol Cell Proteomics. 2008 Jun;7(6):1031-42 [PMID: 18256213]
  12. Mol Biol Cell. 2004 Nov;15(11):4990-5000 [PMID: 15331762]
  13. Mol Biol Cell. 1999 Jan;10(1):47-61 [PMID: 9880326]
  14. J Biol Chem. 2001 Nov 30;276(48):44712-20 [PMID: 11560936]
  15. Cell. 1996 Aug 9;86(3):445-52 [PMID: 8756726]
  16. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8461-6 [PMID: 17485678]
  17. Nature. 2005 Jul 21;436(7049):415-9 [PMID: 16034420]
  18. Kidney Int. 2003 Nov;64(5):1746-54 [PMID: 14531807]
  19. J Biol Chem. 2002 Apr 5;277(14):12190-9 [PMID: 11786538]
  20. J Cell Biol. 1999 Apr 5;145(1):123-39 [PMID: 10189373]
  21. Curr Opin Cell Biol. 2001 Aug;13(4):500-11 [PMID: 11454458]
  22. Cell. 1999 Feb 5;96(3):363-74 [PMID: 10025402]
  23. Nat Struct Mol Biol. 2004 Oct;11(10):975-83 [PMID: 15378032]
  24. Cell. 1992 Sep 4;70(5):729-40 [PMID: 1516131]
  25. Int J Mol Med. 2007 Oct;20(4):581-90 [PMID: 17786291]
  26. Carcinogenesis. 2007 Feb;28(2):423-6 [PMID: 16956908]
  27. Biochem J. 2000 Mar 15;346 Pt 3:593-601 [PMID: 10698684]
  28. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4066-71 [PMID: 12646697]
  29. Trends Biochem Sci. 1999 Nov;24(11):411-4 [PMID: 10542401]
  30. Nat Rev Drug Discov. 2002 Mar;1(3):187-97 [PMID: 12120503]
  31. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6187-92 [PMID: 9600939]
  32. Am J Physiol Gastrointest Liver Physiol. 2007 May;292(5):G1249-62 [PMID: 17255364]
  33. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3220-5 [PMID: 11248059]
  34. Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32 [PMID: 15040445]
  35. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13404-9 [PMID: 16174736]
  36. Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 [PMID: 11252952]
  37. J Cell Biol. 2000 Dec 11;151(6):1207-20 [PMID: 11121436]
  38. FEBS Lett. 2004 Jul 30;571(1-3):86-92 [PMID: 15280022]
  39. J Microsc. 2006 Dec;224(Pt 3):213-32 [PMID: 17210054]
  40. FEBS Lett. 1993 Nov 15;334(2):175-82 [PMID: 8224244]
  41. Nature. 1996 Sep 12;383(6596):172-5 [PMID: 8774882]
  42. J Biol Chem. 2000 Sep 15;275(37):29138-46 [PMID: 10869360]

Grants

  1. DK070856/NIDDK NIH HHS
  2. P01 DK054441/NIDDK NIH HHS
  3. /Howard Hughes Medical Institute
  4. DK48370/NIDDK NIH HHS
  5. DK054441/NIDDK NIH HHS
  6. F32GM082146/NIGMS NIH HHS

MeSH Term

A Kinase Anchor Proteins
Cell Line
Cytosol
Endocytosis
Endosomes
Flow Cytometry
HeLa Cells
Humans
Protein Structure, Tertiary
RNA Interference
Receptors, Transferrin
Transferrin
rab GTP-Binding Proteins
rab4 GTP-Binding Proteins

Chemicals

A Kinase Anchor Proteins
AKAP10 protein, human
Receptors, Transferrin
Transferrin
rab11 protein
rab GTP-Binding Proteins
rab4 GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0recyclingdomainsRab11D-AKAP2proteinsRGSRab4proteintransferrininteractsbindingmembraneendocyticcellsendosomesalsoregulatescompartmentaccumulationKnockdowncausedreceptorDual-specificA-kinase-anchoring2D-AKAP2/AKAP10carboxylterminuskinasePDZdomaincontainstwotandemregulatorG-proteinsignalingpartnersremainedunknownshowinteractGTP-boundfirstdemonstrationsmallGTPaseshelpregulatetraffickingpathwaysrecruitingeffectorspecificAlthoughprimarilycytosolicHeLafractionlocalizescanrecruitedgreaterextentoverexpressionmorphologyRab11-containingco-expressioncausingenlargedRNAinterferenceredistributionconstitutivelyperipheryincreaseratesuggestingpromotesRab4/Rab11-positive

Similar Articles

Cited By (40)